Algebraic algorithms for a class of Schrödinger equations in split quaternionic mechanics
With the breakthroughs made by physicists in high‐dimensional mathematics, it has become possible to represent and solve a number of classical mathematical physics problems using the split quaternion algebra. In this paper, we study the least squares approximation of a class of Schrödinger equations...
Uložené v:
| Vydané v: | Mathematical methods in the applied sciences Ročník 47; číslo 7; s. 6205 - 6215 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Freiburg
Wiley Subscription Services, Inc
15.05.2024
|
| Predmet: | |
| ISSN: | 0170-4214, 1099-1476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | With the breakthroughs made by physicists in high‐dimensional mathematics, it has become possible to represent and solve a number of classical mathematical physics problems using the split quaternion algebra. In this paper, we study the least squares approximation of a class of Schrödinger equations in split quaternionic mechanics and propose two algebraic algorithms to the generalized right eigen‐problem for an i‐Hermitian split quaternion matrix pencil by using two isomorphic mappings. Numerical examples show the effectiveness of the proposed theories and algorithms. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.9916 |