High‐resolution reference evapotranspiration for arid Egypt: Comparative analysis and evaluation of empirical and artificial intelligence models

Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artifici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of climatology Jg. 42; H. 16; S. 10217 - 10237
Hauptverfasser: Sobh, Mohamed Tarek, Nashwan, Mohamed Salem, Amer, Nabil
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 30.12.2022
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0899-8418, 1097-0088
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET0) to generate gridded high‐resolution daily ET0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator. Thirty‐one empirical equations and 20 AI models were evaluated for estimating reference evapotranspiration (ET0) in arid Egypt compared to the Penman–Monteith equation (FAO56‐PM). The robust statistical metric Kling‐Gupta efficiency (KGE) was used for evaluation. Best performing model used to develop high‐resolution ET0. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator.
AbstractList Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET0) to generate gridded high‐resolution daily ET0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator. Thirty‐one empirical equations and 20 AI models were evaluated for estimating reference evapotranspiration (ET0) in arid Egypt compared to the Penman–Monteith equation (FAO56‐PM). The robust statistical metric Kling‐Gupta efficiency (KGE) was used for evaluation. Best performing model used to develop high‐resolution ET0. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator.
Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET 0 ) to generate gridded high‐resolution daily ET 0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET 0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET 0 enabled the detection of a significant increase of 0.12–0.16 mm·decade −1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator.
Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET0) to generate gridded high‐resolution daily ET0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator.
Author Sobh, Mohamed Tarek
Amer, Nabil
Nashwan, Mohamed Salem
Author_xml – sequence: 1
  givenname: Mohamed Tarek
  orcidid: 0000-0002-9675-6499
  surname: Sobh
  fullname: Sobh, Mohamed Tarek
  organization: Technology and Maritime Transport (AASTMT)
– sequence: 2
  givenname: Mohamed Salem
  orcidid: 0000-0003-4007-5878
  surname: Nashwan
  fullname: Nashwan, Mohamed Salem
  email: m.salem@aast.edu
  organization: Technology and Maritime Transport (AASTMT)
– sequence: 3
  givenname: Nabil
  orcidid: 0000-0002-4641-5741
  surname: Amer
  fullname: Amer, Nabil
  organization: Technology and Maritime Transport (AASTMT)
BookMark eNp1kE1OwzAQhS1UJEpB4giR2LBJ8U-a2OxQVSioUjewjlxnUlw5cbDTou44AuKInAQnZYVgNTN633uW3yka1LYGhC4IHhOM6fXGqnHGRXKEhgSLLMaY8wEaYi5EzBPCT9Cp9xuMsRAkHaLPuV6_fL1_OPDWbFtt68hBCQ5qBRHsZGNbJ2vfaCd7sbQukk4X0Wy9b9qbaGqrRnbaDiJZS7P32oel6Lxme_DYMoIqJGglTa9J1-pSKx1OXbdgjF7371W2AOPP0HEpjYfznzlCz3ezp-k8XizvH6a3i1hRwZI4pZQyEImiPOUqWaUrRpOVAoGBKAITCiwVMJFMKi6zCWclD1fBOSZFJ7IRujzkNs6-bsG3-cZuXfiDz2ngBWNZSgJ1daCUs96HbvLG6Uq6fU5w3jUeXCrvGg_o-BeqdNtXEDrU5i9DfDC8aQP7f4Pzx-W0578BDdeYUg
CitedBy_id crossref_primary_10_1002_joc_8730
crossref_primary_10_1016_j_ijdrr_2024_104257
crossref_primary_10_1002_joc_8346
crossref_primary_10_1007_s00382_023_06831_6
crossref_primary_10_1007_s00477_024_02736_w
crossref_primary_10_1061_JIDEDH_IRENG_10187
crossref_primary_10_3390_w17091384
crossref_primary_10_1061_JIDEDH_IRENG_10368
crossref_primary_10_3390_su152115494
Cites_doi 10.5194/hess-23-4323-2019
10.1007/BF02242718
10.1061/(ASCE)0733-9437(2007)133:1(38)
10.1007/978-3-642-51863-8_29
10.1002/qj.49705021008
10.1002/ird.1920
10.1007/s00271-011-0295-z
10.1016/j.atmosres.2019.104809
10.1109/91.995117
10.1097/00010694-196509000-00024
10.1007/s00271-012-0332-6
10.1177/0142331217708242
10.1007/978-3-030-29274-4_3
10.1061/JRCEA4.0000287
10.1016/0002-1571(77)90007-3
10.13031/2013.26773
10.1002/joc.7286
10.1007/s00704-019-02773-4
10.1002/joc.6307
10.1002/joc.7468
10.1038/s41467-021-24747-9
10.1007/978-3-030-39593-3_3
10.1038/s41598-020-77183-y
10.3390/e22050547
10.1111/j.1752-1688.1996.tb04044.x
10.3390/atmos10010013
10.1016/j.jhydrol.2016.02.053
10.1007/s10584-010-9895-5
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.4141/cjps65-051
10.1007/s13143-018-0073-4
10.1016/j.inpa.2020.02.003
10.1016/j.compag.2017.05.002
10.1016/j.agwat.2016.02.019
10.1007/s00704-018-2390-z
10.4236/eng.2013.510B079
10.1016/j.atmosres.2021.105927
10.3390/w11020349
10.1007/s11600-020-00446-9
10.1007/s00704-018-2664-5
10.1007/s12205-016-0641-z
10.1080/01621459.1968.10480934
10.1016/j.agrformet.2013.03.005
10.1007/s00477-021-02055-4
10.1016/j.atmosres.2019.104632
10.1016/j.catena.2020.104711
10.1016/j.agwat.2017.12.017
10.1007/s11269-015-0990-2
10.3390/atmos11090996
10.1016/j.compag.2020.105283
10.1007/s00703-017-0564-3
10.2307/1907187
10.2166/nh.2018.174
10.1007/s11269-017-1890-4
10.1007/BF02245865
10.1002/met.1676
10.1061/(ASCE)0733-9437(2003)129:5(360)
10.1098/rspa.1948.0037
10.1007/s00704-021-03654-5
10.1016/S0022-1694(97)00125-X
10.1111/1752-1688.12484
10.1061/(ASCE)IR.1943-4774.0000453
10.3354/cr029183
10.3390/su13010297
10.5194/hess-18-2789-2014
10.3390/su11164267
10.1080/19942060.2019.1647879
10.1016/j.compag.2020.105653
10.1002/joc.7461
10.1016/j.measurement.2018.09.047
10.1007/s11356-020-08792-3
10.1016/j.jhydrol.2009.08.003
ContentType Journal Article
Copyright 2022 Royal Meteorological Society
Copyright_xml – notice: 2022 Royal Meteorological Society
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/joc.7894
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1097-0088
EndPage 10237
ExternalDocumentID 10_1002_joc_7894
JOC7894
Genre article
GeographicLocations Egypt
GeographicLocations_xml – name: Egypt
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
BANNL
CITATION
O8X
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c2934-62223e94c2868c4b6b324bce90e1c1e52e369e5a3ac8a7583f8e5ad8801d52e33
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876769300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-8418
IngestDate Sun Nov 09 06:16:20 EST 2025
Tue Nov 18 21:57:35 EST 2025
Sat Nov 29 02:36:58 EST 2025
Wed Jan 22 16:20:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-62223e94c2868c4b6b324bce90e1c1e52e369e5a3ac8a7583f8e5ad8801d52e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9675-6499
0000-0002-4641-5741
0000-0003-4007-5878
PQID 2758933761
PQPubID 996368
PageCount 21
ParticipantIDs proquest_journals_2758933761
crossref_primary_10_1002_joc_7894
crossref_citationtrail_10_1002_joc_7894
wiley_primary_10_1002_joc_7894_JOC7894
PublicationCentury 2000
PublicationDate 30 December 2022
PublicationDateYYYYMMDD 2022-12-30
PublicationDate_xml – month: 12
  year: 2022
  text: 30 December 2022
  day: 30
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of climatology
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 1957; 11
2009; 43
1963; 89
1973; 10
2019; 11
2019; 10
2019; 13
2002; 10
1931
1972
2018; 40
2020; 11
2020; 10
2021a; 42
2013; 5
1974; 8
2005; 29
1996; 32
1968; 63
1977
2021b; 42
1948; 193
2003; 129
1990
2020; 176
2018; 135
1924; 50
2019; 23
2007; 133
1961; 3
1986
2021c; 41
2022; 36
2014; 18
1998; 204
2018; 32
1972; 100
1948
2019b; 132
1950; 2
2019a; 55
2011; 138
2021; 8
1985; 1
1985; 5
2021; 145
2019; 1
1963; 63
2019a; 137
2017; 21
1945; 13
1998
2009; 377
2016; 169
1961; 12
1970; 18
1802; 5
2012; 31
2018; 25
2017; 139
2022; 265
2011; 105
2021; 13
2017; 53
2018; 198
1896; 13
1965; 45
2021; 12
2019; 40
2015; 29
2022
2020
1963; 7
2016; 536
2015; 64
1977; 18
2013; 31
2020; 194
2019; 137
1965
2019
2020; 236
2020; 27
1940; 46
2020; 68
2013; 176
2018; 50
2020; 22
1926
2019b; 230
2019; 131
1967
1966
e_1_2_10_21_1
e_1_2_10_44_1
Sharaky A.M. (e_1_2_10_88_1) 2019
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
Cook N.J. (e_1_2_10_15_1) 1986
e_1_2_10_51_1
Szasz G. (e_1_2_10_89_1) 1973; 10
Romanenko V. (e_1_2_10_74_1) 1961; 3
Kharrufa N. (e_1_2_10_43_1) 1985; 5
Trabert W. (e_1_2_10_93_1) 1896; 13
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
Allen R.G. (e_1_2_10_8_1) 1998
e_1_2_10_25_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_41_1
Jones C. (e_1_2_10_40_1) 1990
e_1_2_10_90_1
Brockamp B. (e_1_2_10_13_1) 1963; 7
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
Gangopadhyaya M. (e_1_2_10_22_1) 1966
Dalton J. (e_1_2_10_17_1) 1802; 5
e_1_2_10_10_1
e_1_2_10_33_1
Hamed K.H. (e_1_2_10_26_1) 2019
Kendall M.G. (e_1_2_10_42_1) 1948
Rohwer C. (e_1_2_10_73_1) 1931
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
McGuinness J.L. (e_1_2_10_53_1) 1972
e_1_2_10_87_1
Doorenbos J. (e_1_2_10_19_1) 1977
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_30_1
Hamon W.R. (e_1_2_10_32_1) 1963; 63
Copernicus Climate Change Service (C3S) (e_1_2_10_16_1) 2022
Shahid S. (e_1_2_10_85_1) 2009; 43
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
Turc L. (e_1_2_10_95_1) 1961; 12
e_1_2_10_27_1
Makkink G. (e_1_2_10_50_1) 1957; 11
e_1_2_10_65_1
Prescott J. (e_1_2_10_68_1) 1940; 46
e_1_2_10_24_1
e_1_2_10_20_1
Lott N. (e_1_2_10_48_1)
e_1_2_10_92_1
Berrar D. (e_1_2_10_11_1) 2019
e_1_2_10_96_1
e_1_2_10_54_1
Meyer A. (e_1_2_10_55_1) 1926
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_47_1
References_xml – volume: 64
  start-page: 419
  year: 2015
  end-page: 425
  article-title: Calculating sunshine hours and reference evapotranspiration in arid regions when solar radiation data are limited
  publication-title: Irrigation and Drainage
– volume: 139
  start-page: 103
  year: 2017
  end-page: 114
  article-title: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration
  publication-title: Computers and Electronics in Agriculture
– volume: 50
  start-page: 121
  year: 1924
  end-page: 126
  article-title: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 3
  start-page: 12
  year: 1961
  end-page: 25
  article-title: Computation of the autumn soil moisture using a universal relationship for a large area
  publication-title: Proceedings of Ukrainian Hydrometeorological Research Institute
– start-page: 144
  year: 1977
– volume: 536
  start-page: 376
  year: 2016
  end-page: 383
  article-title: Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China
  publication-title: Journal of Hydrology
– start-page: 209
  year: 1926
  end-page: 347
– volume: 138
  start-page: 592
  year: 2011
  end-page: 599
  article-title: Modified Hargreaves–Samani equation for the assessment of reference evapotranspiration in Alpine river basins
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 27
  start-page: 30001
  year: 2020
  end-page: 30019
  article-title: Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration
  publication-title: Environmental Science and Pollution Research International
– year: 1966
– volume: 129
  start-page: 360
  year: 2003
  end-page: 370
  article-title: Daily grass and alfalfa‐reference evapotranspiration estimates and alfalfa‐to‐grass evapotranspiration ratios in Florida
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 1
  start-page: 542
  year: 2019
  end-page: 545
– volume: 236
  year: 2020
  article-title: Performance of five high resolution satellite‐based precipitation products in arid region of Egypt: an evaluation
  publication-title: Atmospheric Research
– start-page: 119
  year: 2019
  end-page: 148
– volume: 5
  start-page: 391
  year: 2013
  end-page: 395
  article-title: The comparison between random forest and support vector machine algorithm for predicting β‐hairpin motifs in proteins
  publication-title: Engineering
– volume: 23
  start-page: 4323
  year: 2019
  end-page: 4331
  article-title: Technical note: inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores
  publication-title: Hydrology and Earth System Sciences
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– start-page: 47
  year: 2020
  end-page: 62
– volume: 2
  start-page: 1
  year: 1950
  end-page: 38
  article-title: Die Methoden zur Bestimmung der Verdunstung der natürlichen Erdoberfläche
  publication-title: Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B
– volume: 63
  start-page: 52
  year: 1963
  end-page: 62
  article-title: Computation of direct runoff amounts from storm rainfall
  publication-title: International Association of Scientific Hydrology
– volume: 137
  start-page: 2755
  year: 2019
  end-page: 2769
  article-title: Spatial distribution of the trends in precipitation and precipitation extremes in the sub‐Himalayan region of Pakistan
  publication-title: Theoretical and Applied Climatology
– volume: 265
  year: 2022
  article-title: Inconsistency in historical simulations and future projections of temperature and rainfall: a comparison of CMIP5 and CMIP6 models over Southeast Asia
  publication-title: Atmospheric Research
– volume: 176
  start-page: 1
  year: 2013
  end-page: 9
  article-title: Calibration of solar radiation models for Europe using Meteosat second generation and weather station data
  publication-title: Agricultural and Forest Meteorology
– volume: 55
  start-page: 429
  year: 2019a
  end-page: 438
  article-title: Characteristics of annual and seasonal trends of rainfall and temperature in Iraq
  publication-title: Asia‐Pacific Journal of Atmospheric Sciences
– volume: 68
  start-page: 1113
  year: 2020
  end-page: 1126
  article-title: Modelling reference evapotranspiration by combining neuro‐fuzzy and evolutionary strategies
  publication-title: Acta Geophysica
– volume: 13
  start-page: 245
  year: 1945
  end-page: 259
  article-title: Nonparametric tests against trend
  publication-title: Econometrica
– volume: 11
  start-page: 996
  year: 2020
  article-title: Did ERA5 improve temperature and precipitation reanalysis over East Africa?
  publication-title: Atmosphere
– year: 1990
– volume: 40
  start-page: 1864
  year: 2019
  end-page: 1884
  article-title: Spatial assessment of meteorological drought features over different climate regions in Iran
  publication-title: International Journal of Climatology
– year: 1998
– volume: 43
  start-page: 375
  year: 2009
  end-page: 389
  article-title: Spatio‐temporal variability of rainfall over Bangladesh during the time period 1969–2003
  publication-title: Asia‐Pacific Journal of Atmospheric Sciences
– volume: 18
  start-page: 1
  year: 1970
  end-page: 20
  article-title: Verdunstungsstudien am neusiedler See
  publication-title: Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B
– year: 1986
– volume: 1
  start-page: 96
  year: 1985
  end-page: 99
  article-title: Reference crop evapotranspiration from temperature
  publication-title: Applied Engineering in Agriculture
– volume: 13
  start-page: 261
  year: 1896
  end-page: 263
  article-title: Neue Beobachtungen über Verdampfungsgeschwindigkeiten [New observations on evaporation rates]
  publication-title: Meteorologische Zeitschrift
– volume: 29
  start-page: 3195
  year: 2015
  end-page: 3209
  article-title: Support‐vector‐machine‐based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions
  publication-title: Water Resources Management
– volume: 32
  start-page: 1555
  year: 2018
  end-page: 1568
  article-title: Changing pattern of droughts during cropping seasons of Bangladesh
  publication-title: Water Resources Management
– volume: 13
  start-page: 297
  year: 2021
  article-title: Prediction of potential evapotranspiration using temperature‐based heuristic approaches
  publication-title: Sustainability
– volume: 230
  year: 2019b
  article-title: Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data
  publication-title: Atmospheric Research
– volume: 145
  start-page: 925
  year: 2021
  end-page: 939
  article-title: Calibration of empirical equations for estimating reference evapotranspiration in different climates of Iran
  publication-title: Theoretical and Applied Climatology
– volume: 5
  start-page: 39
  year: 1985
  end-page: 47
  article-title: Simplified equation for evapotranspiration in arid regions
  publication-title: Beiträge zur Hydrologie
– volume: 18
  start-page: 409
  year: 1977
  end-page: 424
  article-title: A simple formula for estimating evaporation rates in various climates, using temperature data alone
  publication-title: Agricultural Meteorology
– year: 1965
– volume: 18
  start-page: 2789
  year: 2014
  end-page: 2801
  article-title: Climate change impacts on runoff in West Africa: a review
  publication-title: Hydrology and Earth System Sciences
– year: 2022
– year: 1972
– volume: 105
  start-page: 433
  year: 2011
  end-page: 453
  article-title: Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh
  publication-title: Climatic Change
– volume: 31
  start-page: 575
  year: 2012
  end-page: 588
  article-title: Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration
  publication-title: Irrigation Science
– volume: 50
  start-page: 282
  year: 2018
  end-page: 300
  article-title: Global comparison of 20 reference evapotranspiration equations in a semi‐arid region of Iran
  publication-title: Hydrology Research
– volume: 135
  start-page: 449
  year: 2018
  end-page: 462
  article-title: Temperature‐based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios
  publication-title: Theoretical and Applied Climatology
– volume: 45
  start-page: 276
  year: 1965
  end-page: 284
  article-title: Estimation of latent evaporation from simple weather observations
  publication-title: Canadian Journal of Plant Science
– volume: 40
  start-page: 2681
  year: 2018
  end-page: 2693
  article-title: Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery
  publication-title: Transactions of the Institute of Measurement and Control
– volume: 100
  start-page: 81
  year: 1972
  end-page: 92
  article-title: On the assessment of surface heat flux and evaporation using large‐scale parameters
  publication-title: Monthly Weather Review
– volume: 29
  start-page: 183
  year: 2005
  end-page: 198
  article-title: Climate change impacts on wind speeds and wind energy density in northern Europe: empirical downscaling of multiple AOGCMs
  publication-title: Climate Research
– volume: 7
  start-page: 149
  year: 1963
  end-page: 154
  article-title: Verdunstungsmessungen auf den Steiner See bei Münster
  publication-title: Dt Gewässerkundl Mitt
– volume: 10
  year: 2020
  article-title: The optimal alternative for quantifying reference evapotranspiration in climatic sub‐regions of Bangladesh
  publication-title: Scientific Reports
– volume: 8
  start-page: 173
  year: 2021
  end-page: 184
  article-title: Modelling the daily reference evapotranspiration in semi‐arid region of south India: a case study comparing ANFIS and empirical models
  publication-title: Information Processing in Agriculture
– volume: 131
  start-page: 263
  year: 2019
  end-page: 277
  article-title: Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test
  publication-title: Meteorology and Atmospheric Physics
– volume: 42
  start-page: 4316
  year: 2021a
  end-page: 4332
  article-title: Inter‐comparison of historical simulation and future projections of rainfall and temperature by CMIP5 and CMIP6 GCMs over Egypt
  publication-title: International Journal of Climatology
– volume: 198
  start-page: 28
  year: 2018
  end-page: 38
  article-title: Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt
  publication-title: Agricultural Water Management
– year: 1931
– volume: 46
  start-page: 114
  year: 1940
  end-page: 118
  article-title: Evaporation from a water surface in relation to solar radiation
  publication-title: Transactions. Royal Society of South Australia
– volume: 193
  start-page: 120
  year: 1948
  end-page: 145
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
– volume: 22
  year: 2020
  article-title: Reference evapotranspiration modeling using new heuristic methods
  publication-title: Entropy
– year: 1948
– volume: 5
  start-page: 535
  year: 1802
  end-page: 602
  article-title: Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat
  publication-title: Memoirs of the Literary and Philosophical Society of Manchester
– volume: 53
  start-page: 89
  year: 2017
  end-page: 100
  article-title: PRISM vs. CFSR precipitation data effects on calibration and validation of SWAT models
  publication-title: Journal of the American Water Resources Association
– volume: 10
  start-page: 435
  year: 1973
  end-page: 442
  article-title: A potenciális párolgás meghatározásának új módszere
  publication-title: Hidrológiai Közlöny
– volume: 41
  start-page: 5431
  year: 2021c
  end-page: 5446
  article-title: Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis
  publication-title: International Journal of Climatology
– volume: 132
  start-page: 87
  year: 2019b
  end-page: 98
  article-title: Selection of gridded precipitation data for Iraq using compromise programming
  publication-title: Measurement
– volume: 36
  start-page: 451
  year: 2022
  end-page: 471
  article-title: Daily scale evapotranspiration prediction over the coastal region of southwest Bangladesh: new development of artificial intelligence model
  publication-title: Stochastic Environmental Research and Risk Assessment
– volume: 32
  start-page: 465
  year: 1996
  end-page: 473
  article-title: Evapotranspiration measurements and modeling for three wetland systems in south Florida
  publication-title: Journal of the American Water Resources Association
– volume: 204
  start-page: 182
  year: 1998
  end-page: 196
  article-title: A modified Mann–Kendall trend test for autocorrelated data
  publication-title: Journal of Hydrology
– volume: 11
  year: 2019
  article-title: Evaluation of empirical reference evapotranspiration models using compromise programming: a case study of peninsular Malaysia
  publication-title: Sustainability
– volume: 137
  start-page: 1181
  year: 2019a
  end-page: 1199
  article-title: Spatial distribution of unidirectional trends in climate and weather extremes in Nile River basin
  publication-title: Theoretical and Applied Climatology
– volume: 12
  year: 2021
  article-title: Past and future trends of Egypt's water consumption and its sources
  publication-title: Nature Communications
– volume: 11
  year: 2019
  article-title: Uncertainty in estimated trends using gridded rainfall data: a case study of Bangladesh
  publication-title: Water
– volume: 63
  start-page: 1379
  year: 1968
  end-page: 1389
  article-title: Estimates of the regression coefficient based on Kendall's tau
  publication-title: Journal of the American Statistical Association
– volume: 194
  year: 2020
  article-title: Impact of climate change on reference evapotranspiration in Egypt
  publication-title: Catena
– volume: 31
  start-page: 107
  year: 2013
  end-page: 117
  article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions
  publication-title: Irrigation Science
– volume: 13
  start-page: 878
  year: 2019
  end-page: 891
  article-title: Viability of the advanced adaptive neuro‐fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 10
  start-page: 144
  year: 2002
  end-page: 154
  article-title: DENFIS: dynamic evolving neural‐fuzzy inference system and its application for time‐series prediction
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 25
  start-page: 128
  year: 2018
  end-page: 138
  article-title: Evaluation of several soft computing methods in monthly evapotranspiration modelling
  publication-title: Meteorological Applications
– volume: 11
  start-page: 277
  year: 1957
  end-page: 288
  article-title: Testing the Penman formula by means of lysimeters
  publication-title: Journal of the Institution of Water Engineerrs
– year: 1967
– volume: 10
  start-page: 13
  year: 2019
  article-title: Filling gaps in hourly air temperature data using debiased ERA5 data
  publication-title: Atmosphere
– volume: 169
  start-page: 77
  year: 2016
  end-page: 89
  article-title: Evaluation of reference evapotranspiration models and determination of crop coefficient for and
  publication-title: Agricultural Water Management
– start-page: 95
  year: 2019
  end-page: 117
– volume: 42
  start-page: 4258
  issue: 8
  year: 2021b
  end-page: 4272
  article-title: A novel selection method of CMIP6 GCMs for robust climate projection
  publication-title: International Journal of Climatology
– volume: 133
  start-page: 38
  year: 2007
  end-page: 42
  article-title: Hargreaves versus Penman‐Monteith under humid conditions
  publication-title: Journal of Irrigation and Drainage Engineering
– volume: 8,
  start-page: 353
  year: 1974
  end-page: 364
– volume: 89
  start-page: 15
  year: 1963
  end-page: 41
  article-title: Estimating evapotranspiration from solar radiation
  publication-title: Journal of the Irrigation and Drainage Division
– start-page: 23
  year: 2020
  end-page: 91
– volume: 21
  start-page: 467
  year: 2017
  end-page: 476
  article-title: Development of an optimal reservoir pumping operation for adaptation to climate change
  publication-title: KSCE Journal of Civil Engineering
– volume: 12
  start-page: 13
  year: 1961
  end-page: 49
  article-title: Water requirements assessment of irrigation, potential evapotranspiration: simplified and updated climatic formula
  publication-title: Annales Agronomiques
– volume: 176
  year: 2020
  article-title: Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China
  publication-title: Computers and Electronics in Agriculture
– ident: e_1_2_10_45_1
  doi: 10.5194/hess-23-4323-2019
– ident: e_1_2_10_6_1
  doi: 10.1007/BF02242718
– volume-title: Management of Farm Irrigated Systems
  year: 1990
  ident: e_1_2_10_40_1
– ident: e_1_2_10_94_1
  doi: 10.1061/(ASCE)0733-9437(2007)133:1(38)
– ident: e_1_2_10_14_1
  doi: 10.1007/978-3-642-51863-8_29
– volume-title: A comparison of lysimeter‐derived potential evapotranspiration with computed values
  year: 1972
  ident: e_1_2_10_53_1
– ident: e_1_2_10_9_1
  doi: 10.1002/qj.49705021008
– volume-title: Rank Correlation Methods
  year: 1948
  ident: e_1_2_10_42_1
– ident: e_1_2_10_2_1
  doi: 10.1002/ird.1920
– volume-title: Designers Guide to Wind Loading of Building Structures. Part 1
  year: 1986
  ident: e_1_2_10_15_1
– ident: e_1_2_10_90_1
  doi: 10.1007/s00271-011-0295-z
– ident: e_1_2_10_62_1
  doi: 10.1016/j.atmosres.2019.104809
– volume-title: The FCC Integrated Surface Hourly Database: A New Resource of Global Climate Data
  ident: e_1_2_10_48_1
– ident: e_1_2_10_41_1
  doi: 10.1109/91.995117
– volume-title: Evaporation from free water surfaces
  year: 1931
  ident: e_1_2_10_73_1
– volume: 5
  start-page: 39
  year: 1985
  ident: e_1_2_10_43_1
  article-title: Simplified equation for evapotranspiration in arid regions
  publication-title: Beiträge zur Hydrologie
– volume: 63
  start-page: 52
  year: 1963
  ident: e_1_2_10_32_1
  article-title: Computation of direct runoff amounts from storm rainfall
  publication-title: International Association of Scientific Hydrology
– ident: e_1_2_10_66_1
  doi: 10.1097/00010694-196509000-00024
– volume: 12
  start-page: 13
  year: 1961
  ident: e_1_2_10_95_1
  article-title: Water requirements assessment of irrigation, potential evapotranspiration: simplified and updated climatic formula
  publication-title: Annales Agronomiques
– volume-title: ERA5: data documentation
  year: 2022
  ident: e_1_2_10_16_1
– ident: e_1_2_10_91_1
  doi: 10.1007/s00271-012-0332-6
– ident: e_1_2_10_33_1
  doi: 10.1177/0142331217708242
– ident: e_1_2_10_4_1
  doi: 10.1007/978-3-030-29274-4_3
– ident: e_1_2_10_38_1
  doi: 10.1061/JRCEA4.0000287
– ident: e_1_2_10_46_1
  doi: 10.1016/0002-1571(77)90007-3
– ident: e_1_2_10_34_1
  doi: 10.13031/2013.26773
– ident: e_1_2_10_30_1
  doi: 10.1002/joc.7286
– ident: e_1_2_10_35_1
  doi: 10.1007/s00704-019-02773-4
– ident: e_1_2_10_86_1
  doi: 10.1002/joc.6307
– ident: e_1_2_10_28_1
  doi: 10.1002/joc.7468
– volume: 46
  start-page: 114
  year: 1940
  ident: e_1_2_10_68_1
  article-title: Evaporation from a water surface in relation to solar radiation
  publication-title: Transactions. Royal Society of South Australia
– start-page: 209
  volume-title: Über einige Zusammenhänge zwischen Klima und Boden in Europa
  year: 1926
  ident: e_1_2_10_55_1
– volume: 11
  start-page: 277
  year: 1957
  ident: e_1_2_10_50_1
  article-title: Testing the Penman formula by means of lysimeters
  publication-title: Journal of the Institution of Water Engineerrs
– ident: e_1_2_10_64_1
  doi: 10.1038/s41467-021-24747-9
– ident: e_1_2_10_65_1
  doi: 10.1007/978-3-030-39593-3_3
– ident: e_1_2_10_77_1
  doi: 10.1038/s41598-020-77183-y
– ident: e_1_2_10_57_1
  doi: 10.3390/e22050547
– ident: e_1_2_10_3_1
  doi: 10.1111/j.1752-1688.1996.tb04044.x
– ident: e_1_2_10_47_1
  doi: 10.3390/atmos10010013
– volume: 3
  start-page: 12
  year: 1961
  ident: e_1_2_10_74_1
  article-title: Computation of the autumn soil moisture using a universal relationship for a large area
  publication-title: Proceedings of Ukrainian Hydrometeorological Research Institute
– ident: e_1_2_10_21_1
  doi: 10.1016/j.jhydrol.2016.02.053
– volume-title: FAO Irrigation and Drainage Paper 56
  year: 1998
  ident: e_1_2_10_8_1
– start-page: 542
  volume-title: Reference Module in Life Sciences
  year: 2019
  ident: e_1_2_10_11_1
– ident: e_1_2_10_84_1
  doi: 10.1007/s10584-010-9895-5
– ident: e_1_2_10_69_1
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– ident: e_1_2_10_10_1
  doi: 10.4141/cjps65-051
– ident: e_1_2_10_80_1
  doi: 10.1007/s13143-018-0073-4
– volume-title: Measurement and Estimation of Evaporation and Evapotranspiration
  year: 1966
  ident: e_1_2_10_22_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.inpa.2020.02.003
– ident: e_1_2_10_54_1
  doi: 10.1016/j.compag.2017.05.002
– ident: e_1_2_10_59_1
  doi: 10.1016/j.agwat.2016.02.019
– ident: e_1_2_10_81_1
  doi: 10.1007/s00704-018-2390-z
– start-page: 144
  volume-title: FAO irrigation and drainage paper 24
  year: 1977
  ident: e_1_2_10_19_1
– ident: e_1_2_10_39_1
  doi: 10.4236/eng.2013.510B079
– ident: e_1_2_10_31_1
  doi: 10.1016/j.atmosres.2021.105927
– ident: e_1_2_10_63_1
  doi: 10.3390/w11020349
– ident: e_1_2_10_7_1
  doi: 10.1007/s11600-020-00446-9
– ident: e_1_2_10_60_1
  doi: 10.1007/s00704-018-2664-5
– ident: e_1_2_10_37_1
  doi: 10.1007/s12205-016-0641-z
– ident: e_1_2_10_83_1
  doi: 10.1080/01621459.1968.10480934
– ident: e_1_2_10_12_1
  doi: 10.1016/j.agrformet.2013.03.005
– ident: e_1_2_10_98_1
  doi: 10.1007/s00477-021-02055-4
– ident: e_1_2_10_61_1
  doi: 10.1016/j.atmosres.2019.104632
– ident: e_1_2_10_97_1
  doi: 10.1016/j.catena.2020.104711
– volume: 7
  start-page: 149
  year: 1963
  ident: e_1_2_10_13_1
  article-title: Verdunstungsmessungen auf den Steiner See bei Münster
  publication-title: Dt Gewässerkundl Mitt
– ident: e_1_2_10_52_1
  doi: 10.1016/j.agwat.2017.12.017
– ident: e_1_2_10_96_1
  doi: 10.1007/s11269-015-0990-2
– volume: 10
  start-page: 435
  year: 1973
  ident: e_1_2_10_89_1
  article-title: A potenciális párolgás meghatározásának új módszere
  publication-title: Hidrológiai Közlöny
– ident: e_1_2_10_24_1
  doi: 10.3390/atmos11090996
– ident: e_1_2_10_44_1
  doi: 10.1016/j.compag.2020.105283
– ident: e_1_2_10_76_1
  doi: 10.1007/s00703-017-0564-3
– ident: e_1_2_10_51_1
  doi: 10.2307/1907187
– ident: e_1_2_10_82_1
– start-page: 95
  volume-title: Grand Ethiopian Renaissance Dam Versus Aswan High Dam: A View from Egypt
  year: 2019
  ident: e_1_2_10_26_1
– ident: e_1_2_10_20_1
  doi: 10.2166/nh.2018.174
– ident: e_1_2_10_56_1
  doi: 10.1007/s11269-017-1890-4
– ident: e_1_2_10_49_1
  doi: 10.1007/BF02245865
– start-page: 119
  volume-title: Grand Ethiopian Renaissance Dam Versus Aswan High Dam: A View from Egypt
  year: 2019
  ident: e_1_2_10_88_1
– ident: e_1_2_10_23_1
  doi: 10.1002/met.1676
– ident: e_1_2_10_36_1
  doi: 10.1061/(ASCE)0733-9437(2003)129:5(360)
– ident: e_1_2_10_67_1
  doi: 10.1098/rspa.1948.0037
– volume: 5
  start-page: 535
  year: 1802
  ident: e_1_2_10_17_1
  article-title: Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat
  publication-title: Memoirs of the Literary and Philosophical Society of Manchester
– volume: 13
  start-page: 261
  year: 1896
  ident: e_1_2_10_93_1
  article-title: Neue Beobachtungen über Verdampfungsgeschwindigkeiten [New observations on evaporation rates]
  publication-title: Meteorologische Zeitschrift
– ident: e_1_2_10_87_1
  doi: 10.1007/s00704-021-03654-5
– ident: e_1_2_10_27_1
  doi: 10.1016/S0022-1694(97)00125-X
– ident: e_1_2_10_71_1
  doi: 10.1111/1752-1688.12484
– ident: e_1_2_10_72_1
  doi: 10.1061/(ASCE)IR.1943-4774.0000453
– ident: e_1_2_10_70_1
  doi: 10.3354/cr029183
– ident: e_1_2_10_5_1
  doi: 10.3390/su13010297
– ident: e_1_2_10_75_1
  doi: 10.5194/hess-18-2789-2014
– ident: e_1_2_10_58_1
  doi: 10.3390/su11164267
– ident: e_1_2_10_78_1
  doi: 10.1080/19942060.2019.1647879
– ident: e_1_2_10_99_1
  doi: 10.1016/j.compag.2020.105653
– ident: e_1_2_10_29_1
  doi: 10.1002/joc.7461
– ident: e_1_2_10_79_1
  doi: 10.1016/j.measurement.2018.09.047
– ident: e_1_2_10_92_1
  doi: 10.1007/s11356-020-08792-3
– ident: e_1_2_10_25_1
  doi: 10.1016/j.jhydrol.2009.08.003
– volume: 43
  start-page: 375
  year: 2009
  ident: e_1_2_10_85_1
  article-title: Spatio‐temporal variability of rainfall over Bangladesh during the time period 1969–2003
  publication-title: Asia‐Pacific Journal of Atmospheric Sciences
SSID ssj0009916
Score 2.4652894
Snippet Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10217
SubjectTerms Algorithms
Arid regions
Arid zones
Artificial intelligence
Comparative analysis
Daily
Empirical equations
Estimates
Evapotranspiration
Evapotranspiration estimates
Evapotranspiration models
Fuzzy logic
Group method of data handling
machine learning
Mathematical models
MENA
Minimum temperatures
Modelling
Neural networks
Penman–Monteith equation
potential evapotranspiration
Radial basis function
Radiation
Relative humidity
Resolution
Spline functions
Splines
Statistical analysis
Support vector machines
Water scarcity
Water shortages
Wind speed
Title High‐resolution reference evapotranspiration for arid Egypt: Comparative analysis and evaluation of empirical and artificial intelligence models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.7894
https://www.proquest.com/docview/2758933761
Volume 42
WOSCitedRecordID wos000876769300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0088
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009916
  issn: 0899-8418
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06ffDFb3E6JYLMp7q16Ufim8wNEZ0iDvZW0jSFyVzHNvfsTxB_or_Ee9NunaAg-NSGJCUkN8m5ae45hJwq8KoCqSIrsqVjucrzLMFEbAW-CGLNMThEGrGJoN3m3a54yG9VYixMxg8xP3DDmWHWa5zgMhrXCtLQ51SdB1y4y2QFY6rA8Vq5emx1bgvKXWGET_G_lsVdm8-oZ-tObVb3-2ZUIMxFnGo2mtbGf5q4SdZzeEkvM3vYIkt6sE3Kd4CM05E5QKdV2uj3AKaa1A75wIsen2_v4HXnRkjnyiNUT-UwnRj6815mKRQwLgX3OqZN1C-7oI2CPZzKnOAEXmJa0IjTNKH6Bb6A9mDy0Fwz5graW6AEpUaWZ7xLOq3mU-PaynUaLAVgwbV8xBhauMrhPldu5EeA0iKlRV3bytaeo5kvtCeZVFyCf8ISDqkYVg47xky2R0qDdKD3CRU8Yl4ijZq9K5WWTNlJEkQJOpb1hJXJ2WzAQpWTmKOWRj_M6JedEPo8xD4vk5N5yWFG3PFDmcpszMN86o5DB1ooGKy7dplUzej-Wj-8uW_g8-CvBQ_JmoPhE0gUWa-Q0mT0qo_IqppOeuPRcW7AXzLk-fM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPTFuzivEUSfqmvTS6JPMh1e5hRR8K2kaQoTXcc29-xPEH-iv8SctF0VFASf2pCkhOQk-c5J830AO1J7VYGQkRXZwrFc6XkWpzy2Ap8HsWJ4OUQYsYmg1WIPD_xmDI6KuzAZP8Qo4IYzw6zXOMExIH1QsoY-pnI_YNwdhwnXpwGrwMTJbeO-WXLucqN8igdbFnNtVnDP1pyDou733aiEmF-BqtlpGrP_auMczOQAkxxnFjEPY6qzANUrjY3Tngmhk11Sf2proGpSi_COv3p8vL5pvzs3QzLSHiFqKLrpwBCgtzNbIRrlEu1gx-QUFcwOSb3kDycipzjRLzEpicRJmhD1rL-AFmHy0GAz7grS_kIKSowwT38J7hund_UzK1dqsKSGC67lI8pQ3JUO85l0Iz_SOC2SiteULW3lOYr6XHmCCsmE9lBownQq1muHHWMmXYZKJ-2oFSCcRdRLhNGzd4VUgko7SYIoQdeyltAq7BUjFsqcxhzVNJ7CjIDZCXWfh9jnVdgelexm1B0_lFkvBj3MJ28_dHQLOdUrr12FXTO8v9YPL67r-Fz9a8EtmDq7u2qGzfPW5RpMO3iZAmkja-tQGfRe1AZMyuGg3e9t5tb8CRWQ_eM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MKeKLd3FeI8h8qq5N2ib6JLvgdQ5R8K2kaQoTXcc2ffYniD_RX2KStusEBcGnNiQpIeck-U7SfB_AvlBRlc9FaIU2dywiXNdimEWW7zE_klRfDuFGbMJvt-nDA-uU4CS_C5PyQ4w33PTIMPO1HuCyH8VHBWvoYyIOfcrIFEwTl7mkDNON29b9VcG5y4zyqT7Ysiixac49W3OO8rrfV6MCYk4CVbPStBb-1cZFmM8AJjpNPWIJSrK3DJVrhY2TgdlCR1VUf-oqoGpSK_Chf_X4fHtXcXfmhmisPYLkK-8nI0OA3k19BSmUi1SAHaGmVjA7RvWCPxzxjOJEvUSoIBJHSYzks_qC9giTpx025a5A3QlSUGSEeYarcN9q3tXPrEypwRIKLhDL0yhDMiIc6lFBQi9UOC0UktWkLWzpOhJ7TLocc0G5ilBwTFUqUnOHHelMvAblXtKT64AYDbEbc6NnT7iQHAs7jv0w1qFlLcYVOMgtFoiMxlyraTwFKQGzE6g-D3SfV2BvXLKfUnf8UGYrN3qQDd5h4KgWMqxmXrsCVWPeX-sHFzd1_dz4a8FdmO00WsHVeftyE-YcfZdCs0bWtqA8GrzIbZgRr6PucLCTOfMXpmn9Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90resolution+reference+evapotranspiration+for+arid+Egypt%3A+Comparative+analysis+and+evaluation+of+empirical+and+artificial+intelligence+models&rft.jtitle=International+journal+of+climatology&rft.au=Sobh%2C+Mohamed+Tarek&rft.au=Nashwan%2C+Mohamed+Salem&rft.au=Amer%2C+Nabil&rft.date=2022-12-30&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=42&rft.issue=16&rft.spage=10217&rft.epage=10237&rft_id=info:doi/10.1002%2Fjoc.7894&rft.externalDBID=10.1002%252Fjoc.7894&rft.externalDocID=JOC7894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon