High‐resolution reference evapotranspiration for arid Egypt: Comparative analysis and evaluation of empirical and artificial intelligence models
Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artifici...
Gespeichert in:
| Veröffentlicht in: | International journal of climatology Jg. 42; H. 16; S. 10217 - 10237 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Chichester, UK
John Wiley & Sons, Ltd
30.12.2022
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0899-8418, 1097-0088 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET0) to generate gridded high‐resolution daily ET0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator.
Thirty‐one empirical equations and 20 AI models were evaluated for estimating reference evapotranspiration (ET0) in arid Egypt compared to the Penman–Monteith equation (FAO56‐PM). The robust statistical metric Kling‐Gupta efficiency (KGE) was used for evaluation. Best performing model used to develop high‐resolution ET0. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator. |
|---|---|
| AbstractList | Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET0) to generate gridded high‐resolution daily ET0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator.
Thirty‐one empirical equations and 20 AI models were evaluated for estimating reference evapotranspiration (ET0) in arid Egypt compared to the Penman–Monteith equation (FAO56‐PM). The robust statistical metric Kling‐Gupta efficiency (KGE) was used for evaluation. Best performing model used to develop high‐resolution ET0. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator. Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET 0 ) to generate gridded high‐resolution daily ET 0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET 0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET 0 enabled the detection of a significant increase of 0.12–0.16 mm·decade −1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator. Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water shortages. This study provides an investigation of the performance of 31 widely used empirical equations and 20 models developed using five artificial intelligence (AI) algorithms to estimate reference evapotranspiration (ET0) to generate gridded high‐resolution daily ET0 estimates over Egypt. The AI algorithms include support vector machine‐radial basis function (SVM‐RBF), random forest (RF), group method of data handling neural network (GMDH‐NN), multivariate adaptive regression splines (MARS), and dynamic evolving neural fuzzy interference system (DENFIS). Daily observations records of 41 stations distributed over Egypt were used to calculate ET0 using FAO56 Penman–Monteith equation as a reference estimate. The multiparameter Kling‐Gupta efficiency (KGE) metric was used as an evaluation metric for its robustness in representing different statistical error/agreement characteristics in a single value. By category, the empirical equations based on radiation performed better in replicating FAO56‐PM followed by temperature‐ and mass‐transfer‐based ones. Ritchie equation was found to be the best overall in Egypt (median KGE 0.76) followed by Caprio (median KGE 0.64), and Penman (median KGE 0.52) equations based on station‐wise ranking. On the other hand, the RF model, having maximum and minimum temperatures, wind speed, and relative humidity as predictors, outperformed other AI algorithms. Overall, the RF model performed the best among all the AI models and empirical equations. The generated 0.10° × 0.10° daily estimates of ET0 enabled the detection of a significant increase of 0.12–0.16 mm·decade−1 in the agricultural‐dependent Nile Delta using the modified Mann–Kendall test and Sen's slope estimator. |
| Author | Sobh, Mohamed Tarek Amer, Nabil Nashwan, Mohamed Salem |
| Author_xml | – sequence: 1 givenname: Mohamed Tarek orcidid: 0000-0002-9675-6499 surname: Sobh fullname: Sobh, Mohamed Tarek organization: Technology and Maritime Transport (AASTMT) – sequence: 2 givenname: Mohamed Salem orcidid: 0000-0003-4007-5878 surname: Nashwan fullname: Nashwan, Mohamed Salem email: m.salem@aast.edu organization: Technology and Maritime Transport (AASTMT) – sequence: 3 givenname: Nabil orcidid: 0000-0002-4641-5741 surname: Amer fullname: Amer, Nabil organization: Technology and Maritime Transport (AASTMT) |
| BookMark | eNp1kE1OwzAQhS1UJEpB4giR2LBJ8U-a2OxQVSioUjewjlxnUlw5cbDTou44AuKInAQnZYVgNTN633uW3yka1LYGhC4IHhOM6fXGqnHGRXKEhgSLLMaY8wEaYi5EzBPCT9Cp9xuMsRAkHaLPuV6_fL1_OPDWbFtt68hBCQ5qBRHsZGNbJ2vfaCd7sbQukk4X0Wy9b9qbaGqrRnbaDiJZS7P32oel6Lxme_DYMoIqJGglTa9J1-pSKx1OXbdgjF7371W2AOPP0HEpjYfznzlCz3ezp-k8XizvH6a3i1hRwZI4pZQyEImiPOUqWaUrRpOVAoGBKAITCiwVMJFMKi6zCWclD1fBOSZFJ7IRujzkNs6-bsG3-cZuXfiDz2ngBWNZSgJ1daCUs96HbvLG6Uq6fU5w3jUeXCrvGg_o-BeqdNtXEDrU5i9DfDC8aQP7f4Pzx-W0578BDdeYUg |
| CitedBy_id | crossref_primary_10_1002_joc_8730 crossref_primary_10_1016_j_ijdrr_2024_104257 crossref_primary_10_1002_joc_8346 crossref_primary_10_1007_s00382_023_06831_6 crossref_primary_10_1007_s00477_024_02736_w crossref_primary_10_1061_JIDEDH_IRENG_10187 crossref_primary_10_3390_w17091384 crossref_primary_10_1061_JIDEDH_IRENG_10368 crossref_primary_10_3390_su152115494 |
| Cites_doi | 10.5194/hess-23-4323-2019 10.1007/BF02242718 10.1061/(ASCE)0733-9437(2007)133:1(38) 10.1007/978-3-642-51863-8_29 10.1002/qj.49705021008 10.1002/ird.1920 10.1007/s00271-011-0295-z 10.1016/j.atmosres.2019.104809 10.1109/91.995117 10.1097/00010694-196509000-00024 10.1007/s00271-012-0332-6 10.1177/0142331217708242 10.1007/978-3-030-29274-4_3 10.1061/JRCEA4.0000287 10.1016/0002-1571(77)90007-3 10.13031/2013.26773 10.1002/joc.7286 10.1007/s00704-019-02773-4 10.1002/joc.6307 10.1002/joc.7468 10.1038/s41467-021-24747-9 10.1007/978-3-030-39593-3_3 10.1038/s41598-020-77183-y 10.3390/e22050547 10.1111/j.1752-1688.1996.tb04044.x 10.3390/atmos10010013 10.1016/j.jhydrol.2016.02.053 10.1007/s10584-010-9895-5 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.4141/cjps65-051 10.1007/s13143-018-0073-4 10.1016/j.inpa.2020.02.003 10.1016/j.compag.2017.05.002 10.1016/j.agwat.2016.02.019 10.1007/s00704-018-2390-z 10.4236/eng.2013.510B079 10.1016/j.atmosres.2021.105927 10.3390/w11020349 10.1007/s11600-020-00446-9 10.1007/s00704-018-2664-5 10.1007/s12205-016-0641-z 10.1080/01621459.1968.10480934 10.1016/j.agrformet.2013.03.005 10.1007/s00477-021-02055-4 10.1016/j.atmosres.2019.104632 10.1016/j.catena.2020.104711 10.1016/j.agwat.2017.12.017 10.1007/s11269-015-0990-2 10.3390/atmos11090996 10.1016/j.compag.2020.105283 10.1007/s00703-017-0564-3 10.2307/1907187 10.2166/nh.2018.174 10.1007/s11269-017-1890-4 10.1007/BF02245865 10.1002/met.1676 10.1061/(ASCE)0733-9437(2003)129:5(360) 10.1098/rspa.1948.0037 10.1007/s00704-021-03654-5 10.1016/S0022-1694(97)00125-X 10.1111/1752-1688.12484 10.1061/(ASCE)IR.1943-4774.0000453 10.3354/cr029183 10.3390/su13010297 10.5194/hess-18-2789-2014 10.3390/su11164267 10.1080/19942060.2019.1647879 10.1016/j.compag.2020.105653 10.1002/joc.7461 10.1016/j.measurement.2018.09.047 10.1007/s11356-020-08792-3 10.1016/j.jhydrol.2009.08.003 |
| ContentType | Journal Article |
| Copyright | 2022 Royal Meteorological Society |
| Copyright_xml | – notice: 2022 Royal Meteorological Society |
| DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
| DOI | 10.1002/joc.7894 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1097-0088 |
| EndPage | 10237 |
| ExternalDocumentID | 10_1002_joc_7894 JOC7894 |
| Genre | article |
| GeographicLocations | Egypt |
| GeographicLocations_xml | – name: Egypt |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY BANNL CITATION O8X 7TG 7TN F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-c2934-62223e94c2868c4b6b324bce90e1c1e52e369e5a3ac8a7583f8e5ad8801d52e33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876769300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0899-8418 |
| IngestDate | Sun Nov 09 06:16:20 EST 2025 Tue Nov 18 21:57:35 EST 2025 Sat Nov 29 02:36:58 EST 2025 Wed Jan 22 16:20:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2934-62223e94c2868c4b6b324bce90e1c1e52e369e5a3ac8a7583f8e5ad8801d52e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9675-6499 0000-0002-4641-5741 0000-0003-4007-5878 |
| PQID | 2758933761 |
| PQPubID | 996368 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2758933761 crossref_primary_10_1002_joc_7894 crossref_citationtrail_10_1002_joc_7894 wiley_primary_10_1002_joc_7894_JOC7894 |
| PublicationCentury | 2000 |
| PublicationDate | 30 December 2022 |
| PublicationDateYYYYMMDD | 2022-12-30 |
| PublicationDate_xml | – month: 12 year: 2022 text: 30 December 2022 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal of climatology |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
| References | 1957; 11 2009; 43 1963; 89 1973; 10 2019; 11 2019; 10 2019; 13 2002; 10 1931 1972 2018; 40 2020; 11 2020; 10 2021a; 42 2013; 5 1974; 8 2005; 29 1996; 32 1968; 63 1977 2021b; 42 1948; 193 2003; 129 1990 2020; 176 2018; 135 1924; 50 2019; 23 2007; 133 1961; 3 1986 2021c; 41 2022; 36 2014; 18 1998; 204 2018; 32 1972; 100 1948 2019b; 132 1950; 2 2019a; 55 2011; 138 2021; 8 1985; 1 1985; 5 2021; 145 2019; 1 1963; 63 2019a; 137 2017; 21 1945; 13 1998 2009; 377 2016; 169 1961; 12 1970; 18 1802; 5 2012; 31 2018; 25 2017; 139 2022; 265 2011; 105 2021; 13 2017; 53 2018; 198 1896; 13 1965; 45 2021; 12 2019; 40 2015; 29 2022 2020 1963; 7 2016; 536 2015; 64 1977; 18 2013; 31 2020; 194 2019; 137 1965 2019 2020; 236 2020; 27 1940; 46 2020; 68 2013; 176 2018; 50 2020; 22 1926 2019b; 230 2019; 131 1967 1966 e_1_2_10_21_1 e_1_2_10_44_1 Sharaky A.M. (e_1_2_10_88_1) 2019 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 Cook N.J. (e_1_2_10_15_1) 1986 e_1_2_10_51_1 Szasz G. (e_1_2_10_89_1) 1973; 10 Romanenko V. (e_1_2_10_74_1) 1961; 3 Kharrufa N. (e_1_2_10_43_1) 1985; 5 Trabert W. (e_1_2_10_93_1) 1896; 13 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 Allen R.G. (e_1_2_10_8_1) 1998 e_1_2_10_25_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_41_1 Jones C. (e_1_2_10_40_1) 1990 e_1_2_10_90_1 Brockamp B. (e_1_2_10_13_1) 1963; 7 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 Gangopadhyaya M. (e_1_2_10_22_1) 1966 Dalton J. (e_1_2_10_17_1) 1802; 5 e_1_2_10_10_1 e_1_2_10_33_1 Hamed K.H. (e_1_2_10_26_1) 2019 Kendall M.G. (e_1_2_10_42_1) 1948 Rohwer C. (e_1_2_10_73_1) 1931 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 McGuinness J.L. (e_1_2_10_53_1) 1972 e_1_2_10_87_1 Doorenbos J. (e_1_2_10_19_1) 1977 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_30_1 Hamon W.R. (e_1_2_10_32_1) 1963; 63 Copernicus Climate Change Service (C3S) (e_1_2_10_16_1) 2022 Shahid S. (e_1_2_10_85_1) 2009; 43 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 Turc L. (e_1_2_10_95_1) 1961; 12 e_1_2_10_27_1 Makkink G. (e_1_2_10_50_1) 1957; 11 e_1_2_10_65_1 Prescott J. (e_1_2_10_68_1) 1940; 46 e_1_2_10_24_1 e_1_2_10_20_1 Lott N. (e_1_2_10_48_1) e_1_2_10_92_1 Berrar D. (e_1_2_10_11_1) 2019 e_1_2_10_96_1 e_1_2_10_54_1 Meyer A. (e_1_2_10_55_1) 1926 e_1_2_10_5_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_47_1 |
| References_xml | – volume: 64 start-page: 419 year: 2015 end-page: 425 article-title: Calculating sunshine hours and reference evapotranspiration in arid regions when solar radiation data are limited publication-title: Irrigation and Drainage – volume: 139 start-page: 103 year: 2017 end-page: 114 article-title: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration publication-title: Computers and Electronics in Agriculture – volume: 50 start-page: 121 year: 1924 end-page: 126 article-title: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 3 start-page: 12 year: 1961 end-page: 25 article-title: Computation of the autumn soil moisture using a universal relationship for a large area publication-title: Proceedings of Ukrainian Hydrometeorological Research Institute – start-page: 144 year: 1977 – volume: 536 start-page: 376 year: 2016 end-page: 383 article-title: Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China publication-title: Journal of Hydrology – start-page: 209 year: 1926 end-page: 347 – volume: 138 start-page: 592 year: 2011 end-page: 599 article-title: Modified Hargreaves–Samani equation for the assessment of reference evapotranspiration in Alpine river basins publication-title: Journal of Irrigation and Drainage Engineering – volume: 27 start-page: 30001 year: 2020 end-page: 30019 article-title: Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration publication-title: Environmental Science and Pollution Research International – year: 1966 – volume: 129 start-page: 360 year: 2003 end-page: 370 article-title: Daily grass and alfalfa‐reference evapotranspiration estimates and alfalfa‐to‐grass evapotranspiration ratios in Florida publication-title: Journal of Irrigation and Drainage Engineering – volume: 1 start-page: 542 year: 2019 end-page: 545 – volume: 236 year: 2020 article-title: Performance of five high resolution satellite‐based precipitation products in arid region of Egypt: an evaluation publication-title: Atmospheric Research – start-page: 119 year: 2019 end-page: 148 – volume: 5 start-page: 391 year: 2013 end-page: 395 article-title: The comparison between random forest and support vector machine algorithm for predicting β‐hairpin motifs in proteins publication-title: Engineering – volume: 23 start-page: 4323 year: 2019 end-page: 4331 article-title: Technical note: inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores publication-title: Hydrology and Earth System Sciences – volume: 377 start-page: 80 year: 2009 end-page: 91 article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling publication-title: Journal of Hydrology – start-page: 47 year: 2020 end-page: 62 – volume: 2 start-page: 1 year: 1950 end-page: 38 article-title: Die Methoden zur Bestimmung der Verdunstung der natürlichen Erdoberfläche publication-title: Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B – volume: 63 start-page: 52 year: 1963 end-page: 62 article-title: Computation of direct runoff amounts from storm rainfall publication-title: International Association of Scientific Hydrology – volume: 137 start-page: 2755 year: 2019 end-page: 2769 article-title: Spatial distribution of the trends in precipitation and precipitation extremes in the sub‐Himalayan region of Pakistan publication-title: Theoretical and Applied Climatology – volume: 265 year: 2022 article-title: Inconsistency in historical simulations and future projections of temperature and rainfall: a comparison of CMIP5 and CMIP6 models over Southeast Asia publication-title: Atmospheric Research – volume: 176 start-page: 1 year: 2013 end-page: 9 article-title: Calibration of solar radiation models for Europe using Meteosat second generation and weather station data publication-title: Agricultural and Forest Meteorology – volume: 55 start-page: 429 year: 2019a end-page: 438 article-title: Characteristics of annual and seasonal trends of rainfall and temperature in Iraq publication-title: Asia‐Pacific Journal of Atmospheric Sciences – volume: 68 start-page: 1113 year: 2020 end-page: 1126 article-title: Modelling reference evapotranspiration by combining neuro‐fuzzy and evolutionary strategies publication-title: Acta Geophysica – volume: 13 start-page: 245 year: 1945 end-page: 259 article-title: Nonparametric tests against trend publication-title: Econometrica – volume: 11 start-page: 996 year: 2020 article-title: Did ERA5 improve temperature and precipitation reanalysis over East Africa? publication-title: Atmosphere – year: 1990 – volume: 40 start-page: 1864 year: 2019 end-page: 1884 article-title: Spatial assessment of meteorological drought features over different climate regions in Iran publication-title: International Journal of Climatology – year: 1998 – volume: 43 start-page: 375 year: 2009 end-page: 389 article-title: Spatio‐temporal variability of rainfall over Bangladesh during the time period 1969–2003 publication-title: Asia‐Pacific Journal of Atmospheric Sciences – volume: 18 start-page: 1 year: 1970 end-page: 20 article-title: Verdunstungsstudien am neusiedler See publication-title: Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B – year: 1986 – volume: 1 start-page: 96 year: 1985 end-page: 99 article-title: Reference crop evapotranspiration from temperature publication-title: Applied Engineering in Agriculture – volume: 13 start-page: 261 year: 1896 end-page: 263 article-title: Neue Beobachtungen über Verdampfungsgeschwindigkeiten [New observations on evaporation rates] publication-title: Meteorologische Zeitschrift – volume: 29 start-page: 3195 year: 2015 end-page: 3209 article-title: Support‐vector‐machine‐based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions publication-title: Water Resources Management – volume: 32 start-page: 1555 year: 2018 end-page: 1568 article-title: Changing pattern of droughts during cropping seasons of Bangladesh publication-title: Water Resources Management – volume: 13 start-page: 297 year: 2021 article-title: Prediction of potential evapotranspiration using temperature‐based heuristic approaches publication-title: Sustainability – volume: 230 year: 2019b article-title: Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data publication-title: Atmospheric Research – volume: 145 start-page: 925 year: 2021 end-page: 939 article-title: Calibration of empirical equations for estimating reference evapotranspiration in different climates of Iran publication-title: Theoretical and Applied Climatology – volume: 5 start-page: 39 year: 1985 end-page: 47 article-title: Simplified equation for evapotranspiration in arid regions publication-title: Beiträge zur Hydrologie – volume: 18 start-page: 409 year: 1977 end-page: 424 article-title: A simple formula for estimating evaporation rates in various climates, using temperature data alone publication-title: Agricultural Meteorology – year: 1965 – volume: 18 start-page: 2789 year: 2014 end-page: 2801 article-title: Climate change impacts on runoff in West Africa: a review publication-title: Hydrology and Earth System Sciences – year: 2022 – year: 1972 – volume: 105 start-page: 433 year: 2011 end-page: 453 article-title: Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh publication-title: Climatic Change – volume: 31 start-page: 575 year: 2012 end-page: 588 article-title: Applicability of support vector machines and adaptive neurofuzzy inference system for modeling potato crop evapotranspiration publication-title: Irrigation Science – volume: 50 start-page: 282 year: 2018 end-page: 300 article-title: Global comparison of 20 reference evapotranspiration equations in a semi‐arid region of Iran publication-title: Hydrology Research – volume: 135 start-page: 449 year: 2018 end-page: 462 article-title: Temperature‐based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios publication-title: Theoretical and Applied Climatology – volume: 45 start-page: 276 year: 1965 end-page: 284 article-title: Estimation of latent evaporation from simple weather observations publication-title: Canadian Journal of Plant Science – volume: 40 start-page: 2681 year: 2018 end-page: 2693 article-title: Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery publication-title: Transactions of the Institute of Measurement and Control – volume: 100 start-page: 81 year: 1972 end-page: 92 article-title: On the assessment of surface heat flux and evaporation using large‐scale parameters publication-title: Monthly Weather Review – volume: 29 start-page: 183 year: 2005 end-page: 198 article-title: Climate change impacts on wind speeds and wind energy density in northern Europe: empirical downscaling of multiple AOGCMs publication-title: Climate Research – volume: 7 start-page: 149 year: 1963 end-page: 154 article-title: Verdunstungsmessungen auf den Steiner See bei Münster publication-title: Dt Gewässerkundl Mitt – volume: 10 year: 2020 article-title: The optimal alternative for quantifying reference evapotranspiration in climatic sub‐regions of Bangladesh publication-title: Scientific Reports – volume: 8 start-page: 173 year: 2021 end-page: 184 article-title: Modelling the daily reference evapotranspiration in semi‐arid region of south India: a case study comparing ANFIS and empirical models publication-title: Information Processing in Agriculture – volume: 131 start-page: 263 year: 2019 end-page: 277 article-title: Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test publication-title: Meteorology and Atmospheric Physics – volume: 42 start-page: 4316 year: 2021a end-page: 4332 article-title: Inter‐comparison of historical simulation and future projections of rainfall and temperature by CMIP5 and CMIP6 GCMs over Egypt publication-title: International Journal of Climatology – volume: 198 start-page: 28 year: 2018 end-page: 38 article-title: Using gene expression programming in monthly reference evapotranspiration modeling: a case study in Egypt publication-title: Agricultural Water Management – year: 1931 – volume: 46 start-page: 114 year: 1940 end-page: 118 article-title: Evaporation from a water surface in relation to solar radiation publication-title: Transactions. Royal Society of South Australia – volume: 193 start-page: 120 year: 1948 end-page: 145 article-title: Natural evaporation from open water, bare soil and grass publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences – volume: 22 year: 2020 article-title: Reference evapotranspiration modeling using new heuristic methods publication-title: Entropy – year: 1948 – volume: 5 start-page: 535 year: 1802 end-page: 602 article-title: Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat publication-title: Memoirs of the Literary and Philosophical Society of Manchester – volume: 53 start-page: 89 year: 2017 end-page: 100 article-title: PRISM vs. CFSR precipitation data effects on calibration and validation of SWAT models publication-title: Journal of the American Water Resources Association – volume: 10 start-page: 435 year: 1973 end-page: 442 article-title: A potenciális párolgás meghatározásának új módszere publication-title: Hidrológiai Közlöny – volume: 41 start-page: 5431 year: 2021c end-page: 5446 article-title: Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis publication-title: International Journal of Climatology – volume: 132 start-page: 87 year: 2019b end-page: 98 article-title: Selection of gridded precipitation data for Iraq using compromise programming publication-title: Measurement – volume: 36 start-page: 451 year: 2022 end-page: 471 article-title: Daily scale evapotranspiration prediction over the coastal region of southwest Bangladesh: new development of artificial intelligence model publication-title: Stochastic Environmental Research and Risk Assessment – volume: 32 start-page: 465 year: 1996 end-page: 473 article-title: Evapotranspiration measurements and modeling for three wetland systems in south Florida publication-title: Journal of the American Water Resources Association – volume: 204 start-page: 182 year: 1998 end-page: 196 article-title: A modified Mann–Kendall trend test for autocorrelated data publication-title: Journal of Hydrology – volume: 11 year: 2019 article-title: Evaluation of empirical reference evapotranspiration models using compromise programming: a case study of peninsular Malaysia publication-title: Sustainability – volume: 137 start-page: 1181 year: 2019a end-page: 1199 article-title: Spatial distribution of unidirectional trends in climate and weather extremes in Nile River basin publication-title: Theoretical and Applied Climatology – volume: 12 year: 2021 article-title: Past and future trends of Egypt's water consumption and its sources publication-title: Nature Communications – volume: 11 year: 2019 article-title: Uncertainty in estimated trends using gridded rainfall data: a case study of Bangladesh publication-title: Water – volume: 63 start-page: 1379 year: 1968 end-page: 1389 article-title: Estimates of the regression coefficient based on Kendall's tau publication-title: Journal of the American Statistical Association – volume: 194 year: 2020 article-title: Impact of climate change on reference evapotranspiration in Egypt publication-title: Catena – volume: 31 start-page: 107 year: 2013 end-page: 117 article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions publication-title: Irrigation Science – volume: 13 start-page: 878 year: 2019 end-page: 891 article-title: Viability of the advanced adaptive neuro‐fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 10 start-page: 144 year: 2002 end-page: 154 article-title: DENFIS: dynamic evolving neural‐fuzzy inference system and its application for time‐series prediction publication-title: IEEE Transactions on Fuzzy Systems – volume: 25 start-page: 128 year: 2018 end-page: 138 article-title: Evaluation of several soft computing methods in monthly evapotranspiration modelling publication-title: Meteorological Applications – volume: 11 start-page: 277 year: 1957 end-page: 288 article-title: Testing the Penman formula by means of lysimeters publication-title: Journal of the Institution of Water Engineerrs – year: 1967 – volume: 10 start-page: 13 year: 2019 article-title: Filling gaps in hourly air temperature data using debiased ERA5 data publication-title: Atmosphere – volume: 169 start-page: 77 year: 2016 end-page: 89 article-title: Evaluation of reference evapotranspiration models and determination of crop coefficient for and publication-title: Agricultural Water Management – start-page: 95 year: 2019 end-page: 117 – volume: 42 start-page: 4258 issue: 8 year: 2021b end-page: 4272 article-title: A novel selection method of CMIP6 GCMs for robust climate projection publication-title: International Journal of Climatology – volume: 133 start-page: 38 year: 2007 end-page: 42 article-title: Hargreaves versus Penman‐Monteith under humid conditions publication-title: Journal of Irrigation and Drainage Engineering – volume: 8, start-page: 353 year: 1974 end-page: 364 – volume: 89 start-page: 15 year: 1963 end-page: 41 article-title: Estimating evapotranspiration from solar radiation publication-title: Journal of the Irrigation and Drainage Division – start-page: 23 year: 2020 end-page: 91 – volume: 21 start-page: 467 year: 2017 end-page: 476 article-title: Development of an optimal reservoir pumping operation for adaptation to climate change publication-title: KSCE Journal of Civil Engineering – volume: 12 start-page: 13 year: 1961 end-page: 49 article-title: Water requirements assessment of irrigation, potential evapotranspiration: simplified and updated climatic formula publication-title: Annales Agronomiques – volume: 176 year: 2020 article-title: Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China publication-title: Computers and Electronics in Agriculture – ident: e_1_2_10_45_1 doi: 10.5194/hess-23-4323-2019 – ident: e_1_2_10_6_1 doi: 10.1007/BF02242718 – volume-title: Management of Farm Irrigated Systems year: 1990 ident: e_1_2_10_40_1 – ident: e_1_2_10_94_1 doi: 10.1061/(ASCE)0733-9437(2007)133:1(38) – ident: e_1_2_10_14_1 doi: 10.1007/978-3-642-51863-8_29 – volume-title: A comparison of lysimeter‐derived potential evapotranspiration with computed values year: 1972 ident: e_1_2_10_53_1 – ident: e_1_2_10_9_1 doi: 10.1002/qj.49705021008 – volume-title: Rank Correlation Methods year: 1948 ident: e_1_2_10_42_1 – ident: e_1_2_10_2_1 doi: 10.1002/ird.1920 – volume-title: Designers Guide to Wind Loading of Building Structures. Part 1 year: 1986 ident: e_1_2_10_15_1 – ident: e_1_2_10_90_1 doi: 10.1007/s00271-011-0295-z – ident: e_1_2_10_62_1 doi: 10.1016/j.atmosres.2019.104809 – volume-title: The FCC Integrated Surface Hourly Database: A New Resource of Global Climate Data ident: e_1_2_10_48_1 – ident: e_1_2_10_41_1 doi: 10.1109/91.995117 – volume-title: Evaporation from free water surfaces year: 1931 ident: e_1_2_10_73_1 – volume: 5 start-page: 39 year: 1985 ident: e_1_2_10_43_1 article-title: Simplified equation for evapotranspiration in arid regions publication-title: Beiträge zur Hydrologie – volume: 63 start-page: 52 year: 1963 ident: e_1_2_10_32_1 article-title: Computation of direct runoff amounts from storm rainfall publication-title: International Association of Scientific Hydrology – ident: e_1_2_10_66_1 doi: 10.1097/00010694-196509000-00024 – volume: 12 start-page: 13 year: 1961 ident: e_1_2_10_95_1 article-title: Water requirements assessment of irrigation, potential evapotranspiration: simplified and updated climatic formula publication-title: Annales Agronomiques – volume-title: ERA5: data documentation year: 2022 ident: e_1_2_10_16_1 – ident: e_1_2_10_91_1 doi: 10.1007/s00271-012-0332-6 – ident: e_1_2_10_33_1 doi: 10.1177/0142331217708242 – ident: e_1_2_10_4_1 doi: 10.1007/978-3-030-29274-4_3 – ident: e_1_2_10_38_1 doi: 10.1061/JRCEA4.0000287 – ident: e_1_2_10_46_1 doi: 10.1016/0002-1571(77)90007-3 – ident: e_1_2_10_34_1 doi: 10.13031/2013.26773 – ident: e_1_2_10_30_1 doi: 10.1002/joc.7286 – ident: e_1_2_10_35_1 doi: 10.1007/s00704-019-02773-4 – ident: e_1_2_10_86_1 doi: 10.1002/joc.6307 – ident: e_1_2_10_28_1 doi: 10.1002/joc.7468 – volume: 46 start-page: 114 year: 1940 ident: e_1_2_10_68_1 article-title: Evaporation from a water surface in relation to solar radiation publication-title: Transactions. Royal Society of South Australia – start-page: 209 volume-title: Über einige Zusammenhänge zwischen Klima und Boden in Europa year: 1926 ident: e_1_2_10_55_1 – volume: 11 start-page: 277 year: 1957 ident: e_1_2_10_50_1 article-title: Testing the Penman formula by means of lysimeters publication-title: Journal of the Institution of Water Engineerrs – ident: e_1_2_10_64_1 doi: 10.1038/s41467-021-24747-9 – ident: e_1_2_10_65_1 doi: 10.1007/978-3-030-39593-3_3 – ident: e_1_2_10_77_1 doi: 10.1038/s41598-020-77183-y – ident: e_1_2_10_57_1 doi: 10.3390/e22050547 – ident: e_1_2_10_3_1 doi: 10.1111/j.1752-1688.1996.tb04044.x – ident: e_1_2_10_47_1 doi: 10.3390/atmos10010013 – volume: 3 start-page: 12 year: 1961 ident: e_1_2_10_74_1 article-title: Computation of the autumn soil moisture using a universal relationship for a large area publication-title: Proceedings of Ukrainian Hydrometeorological Research Institute – ident: e_1_2_10_21_1 doi: 10.1016/j.jhydrol.2016.02.053 – volume-title: FAO Irrigation and Drainage Paper 56 year: 1998 ident: e_1_2_10_8_1 – start-page: 542 volume-title: Reference Module in Life Sciences year: 2019 ident: e_1_2_10_11_1 – ident: e_1_2_10_84_1 doi: 10.1007/s10584-010-9895-5 – ident: e_1_2_10_69_1 doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – ident: e_1_2_10_10_1 doi: 10.4141/cjps65-051 – ident: e_1_2_10_80_1 doi: 10.1007/s13143-018-0073-4 – volume-title: Measurement and Estimation of Evaporation and Evapotranspiration year: 1966 ident: e_1_2_10_22_1 – ident: e_1_2_10_18_1 doi: 10.1016/j.inpa.2020.02.003 – ident: e_1_2_10_54_1 doi: 10.1016/j.compag.2017.05.002 – ident: e_1_2_10_59_1 doi: 10.1016/j.agwat.2016.02.019 – ident: e_1_2_10_81_1 doi: 10.1007/s00704-018-2390-z – start-page: 144 volume-title: FAO irrigation and drainage paper 24 year: 1977 ident: e_1_2_10_19_1 – ident: e_1_2_10_39_1 doi: 10.4236/eng.2013.510B079 – ident: e_1_2_10_31_1 doi: 10.1016/j.atmosres.2021.105927 – ident: e_1_2_10_63_1 doi: 10.3390/w11020349 – ident: e_1_2_10_7_1 doi: 10.1007/s11600-020-00446-9 – ident: e_1_2_10_60_1 doi: 10.1007/s00704-018-2664-5 – ident: e_1_2_10_37_1 doi: 10.1007/s12205-016-0641-z – ident: e_1_2_10_83_1 doi: 10.1080/01621459.1968.10480934 – ident: e_1_2_10_12_1 doi: 10.1016/j.agrformet.2013.03.005 – ident: e_1_2_10_98_1 doi: 10.1007/s00477-021-02055-4 – ident: e_1_2_10_61_1 doi: 10.1016/j.atmosres.2019.104632 – ident: e_1_2_10_97_1 doi: 10.1016/j.catena.2020.104711 – volume: 7 start-page: 149 year: 1963 ident: e_1_2_10_13_1 article-title: Verdunstungsmessungen auf den Steiner See bei Münster publication-title: Dt Gewässerkundl Mitt – ident: e_1_2_10_52_1 doi: 10.1016/j.agwat.2017.12.017 – ident: e_1_2_10_96_1 doi: 10.1007/s11269-015-0990-2 – volume: 10 start-page: 435 year: 1973 ident: e_1_2_10_89_1 article-title: A potenciális párolgás meghatározásának új módszere publication-title: Hidrológiai Közlöny – ident: e_1_2_10_24_1 doi: 10.3390/atmos11090996 – ident: e_1_2_10_44_1 doi: 10.1016/j.compag.2020.105283 – ident: e_1_2_10_76_1 doi: 10.1007/s00703-017-0564-3 – ident: e_1_2_10_51_1 doi: 10.2307/1907187 – ident: e_1_2_10_82_1 – start-page: 95 volume-title: Grand Ethiopian Renaissance Dam Versus Aswan High Dam: A View from Egypt year: 2019 ident: e_1_2_10_26_1 – ident: e_1_2_10_20_1 doi: 10.2166/nh.2018.174 – ident: e_1_2_10_56_1 doi: 10.1007/s11269-017-1890-4 – ident: e_1_2_10_49_1 doi: 10.1007/BF02245865 – start-page: 119 volume-title: Grand Ethiopian Renaissance Dam Versus Aswan High Dam: A View from Egypt year: 2019 ident: e_1_2_10_88_1 – ident: e_1_2_10_23_1 doi: 10.1002/met.1676 – ident: e_1_2_10_36_1 doi: 10.1061/(ASCE)0733-9437(2003)129:5(360) – ident: e_1_2_10_67_1 doi: 10.1098/rspa.1948.0037 – volume: 5 start-page: 535 year: 1802 ident: e_1_2_10_17_1 article-title: Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat publication-title: Memoirs of the Literary and Philosophical Society of Manchester – volume: 13 start-page: 261 year: 1896 ident: e_1_2_10_93_1 article-title: Neue Beobachtungen über Verdampfungsgeschwindigkeiten [New observations on evaporation rates] publication-title: Meteorologische Zeitschrift – ident: e_1_2_10_87_1 doi: 10.1007/s00704-021-03654-5 – ident: e_1_2_10_27_1 doi: 10.1016/S0022-1694(97)00125-X – ident: e_1_2_10_71_1 doi: 10.1111/1752-1688.12484 – ident: e_1_2_10_72_1 doi: 10.1061/(ASCE)IR.1943-4774.0000453 – ident: e_1_2_10_70_1 doi: 10.3354/cr029183 – ident: e_1_2_10_5_1 doi: 10.3390/su13010297 – ident: e_1_2_10_75_1 doi: 10.5194/hess-18-2789-2014 – ident: e_1_2_10_58_1 doi: 10.3390/su11164267 – ident: e_1_2_10_78_1 doi: 10.1080/19942060.2019.1647879 – ident: e_1_2_10_99_1 doi: 10.1016/j.compag.2020.105653 – ident: e_1_2_10_29_1 doi: 10.1002/joc.7461 – ident: e_1_2_10_79_1 doi: 10.1016/j.measurement.2018.09.047 – ident: e_1_2_10_92_1 doi: 10.1007/s11356-020-08792-3 – ident: e_1_2_10_25_1 doi: 10.1016/j.jhydrol.2009.08.003 – volume: 43 start-page: 375 year: 2009 ident: e_1_2_10_85_1 article-title: Spatio‐temporal variability of rainfall over Bangladesh during the time period 1969–2003 publication-title: Asia‐Pacific Journal of Atmospheric Sciences |
| SSID | ssj0009916 |
| Score | 2.4652894 |
| Snippet | Accurate estimation of evapotranspiration has crucial importance in arid regions like Egypt, which suffers from the scarcity of precipitation and water... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10217 |
| SubjectTerms | Algorithms Arid regions Arid zones Artificial intelligence Comparative analysis Daily Empirical equations Estimates Evapotranspiration Evapotranspiration estimates Evapotranspiration models Fuzzy logic Group method of data handling machine learning Mathematical models MENA Minimum temperatures Modelling Neural networks Penman–Monteith equation potential evapotranspiration Radial basis function Radiation Relative humidity Resolution Spline functions Splines Statistical analysis Support vector machines Water scarcity Water shortages Wind speed |
| Title | High‐resolution reference evapotranspiration for arid Egypt: Comparative analysis and evaluation of empirical and artificial intelligence models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.7894 https://www.proquest.com/docview/2758933761 |
| Volume | 42 |
| WOSCitedRecordID | wos000876769300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0088 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009916 issn: 0899-8418 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA06ffDFb3E6JYLMp7q16Ufim8wNEZ0iDvZW0jSFyVzHNvfsTxB_or_Ee9NunaAg-NSGJCUkN8m5ae45hJwq8KoCqSIrsqVjucrzLMFEbAW-CGLNMThEGrGJoN3m3a54yG9VYixMxg8xP3DDmWHWa5zgMhrXCtLQ51SdB1y4y2QFY6rA8Vq5emx1bgvKXWGET_G_lsVdm8-oZ-tObVb3-2ZUIMxFnGo2mtbGf5q4SdZzeEkvM3vYIkt6sE3Kd4CM05E5QKdV2uj3AKaa1A75wIsen2_v4HXnRkjnyiNUT-UwnRj6815mKRQwLgX3OqZN1C-7oI2CPZzKnOAEXmJa0IjTNKH6Bb6A9mDy0Fwz5graW6AEpUaWZ7xLOq3mU-PaynUaLAVgwbV8xBhauMrhPldu5EeA0iKlRV3bytaeo5kvtCeZVFyCf8ISDqkYVg47xky2R0qDdKD3CRU8Yl4ijZq9K5WWTNlJEkQJOpb1hJXJ2WzAQpWTmKOWRj_M6JedEPo8xD4vk5N5yWFG3PFDmcpszMN86o5DB1ooGKy7dplUzej-Wj-8uW_g8-CvBQ_JmoPhE0gUWa-Q0mT0qo_IqppOeuPRcW7AXzLk-fM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPTFuzivEUSfqmvTS6JPMh1e5hRR8K2kaQoTXcc29-xPEH-iv8SctF0VFASf2pCkhOQk-c5J830AO1J7VYGQkRXZwrFc6XkWpzy2Ap8HsWJ4OUQYsYmg1WIPD_xmDI6KuzAZP8Qo4IYzw6zXOMExIH1QsoY-pnI_YNwdhwnXpwGrwMTJbeO-WXLucqN8igdbFnNtVnDP1pyDou733aiEmF-BqtlpGrP_auMczOQAkxxnFjEPY6qzANUrjY3Tngmhk11Sf2proGpSi_COv3p8vL5pvzs3QzLSHiFqKLrpwBCgtzNbIRrlEu1gx-QUFcwOSb3kDycipzjRLzEpicRJmhD1rL-AFmHy0GAz7grS_kIKSowwT38J7hund_UzK1dqsKSGC67lI8pQ3JUO85l0Iz_SOC2SiteULW3lOYr6XHmCCsmE9lBownQq1muHHWMmXYZKJ-2oFSCcRdRLhNGzd4VUgko7SYIoQdeyltAq7BUjFsqcxhzVNJ7CjIDZCXWfh9jnVdgelexm1B0_lFkvBj3MJ28_dHQLOdUrr12FXTO8v9YPL67r-Fz9a8EtmDq7u2qGzfPW5RpMO3iZAmkja-tQGfRe1AZMyuGg3e9t5tb8CRWQ_eM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MKeKLd3FeI8h8qq5N2ib6JLvgdQ5R8K2kaQoTXcc2ffYniD_RX2KStusEBcGnNiQpIeck-U7SfB_AvlBRlc9FaIU2dywiXNdimEWW7zE_klRfDuFGbMJvt-nDA-uU4CS_C5PyQ4w33PTIMPO1HuCyH8VHBWvoYyIOfcrIFEwTl7mkDNON29b9VcG5y4zyqT7Ysiixac49W3OO8rrfV6MCYk4CVbPStBb-1cZFmM8AJjpNPWIJSrK3DJVrhY2TgdlCR1VUf-oqoGpSK_Chf_X4fHtXcXfmhmisPYLkK-8nI0OA3k19BSmUi1SAHaGmVjA7RvWCPxzxjOJEvUSoIBJHSYzks_qC9giTpx025a5A3QlSUGSEeYarcN9q3tXPrEypwRIKLhDL0yhDMiIc6lFBQi9UOC0UktWkLWzpOhJ7TLocc0G5ilBwTFUqUnOHHelMvAblXtKT64AYDbEbc6NnT7iQHAs7jv0w1qFlLcYVOMgtFoiMxlyraTwFKQGzE6g-D3SfV2BvXLKfUnf8UGYrN3qQDd5h4KgWMqxmXrsCVWPeX-sHFzd1_dz4a8FdmO00WsHVeftyE-YcfZdCs0bWtqA8GrzIbZgRr6PucLCTOfMXpmn9Xg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90resolution+reference+evapotranspiration+for+arid+Egypt%3A+Comparative+analysis+and+evaluation+of+empirical+and+artificial+intelligence+models&rft.jtitle=International+journal+of+climatology&rft.au=Sobh%2C+Mohamed+Tarek&rft.au=Nashwan%2C+Mohamed+Salem&rft.au=Amer%2C+Nabil&rft.date=2022-12-30&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=42&rft.issue=16&rft.spage=10217&rft.epage=10237&rft_id=info:doi/10.1002%2Fjoc.7894&rft.externalDBID=10.1002%252Fjoc.7894&rft.externalDocID=JOC7894 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon |