Hermite‐Hadamard type inequalities for generalized Riemann‐Liouville fractional integrals of h‐convex functions

In this paper, we establish some Hermite‐Hadamard type inequalities for the Generalized Riemann‐Liouville fractional integrals Ia+,gαf and Ib−,gαf, where g is a strictly increasing function on a,b, having a continuous derivative on a,b and under the assumption that the composite function f∘g−1 is h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods in the applied sciences Ročník 44; číslo 3; s. 2364 - 2380
Hlavní autor: Dragomir, Silvestru Sever
Médium: Journal Article
Jazyk:angličtina
Vydáno: Freiburg Wiley Subscription Services, Inc 01.02.2021
Témata:
ISSN:0170-4214, 1099-1476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we establish some Hermite‐Hadamard type inequalities for the Generalized Riemann‐Liouville fractional integrals Ia+,gαf and Ib−,gαf, where g is a strictly increasing function on a,b, having a continuous derivative on a,b and under the assumption that the composite function f∘g−1 is h ‐convex on ga,gb. Some applications for Hadamard fractional integrals and s‐Godunova‐Levin type convex functions are also provided.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5893