Some new inequalities for generalized h‐convex functions involving local fractional integral operators with Mittag‐Leffler kernel

In this paper, we firstly construct two local fractional integral operators with Mittag‐Leffler kernel on Yang's fractal sets. Then, two local fractional integral identities with the first‐ and second‐order derivatives are derived. With these as auxiliary tools, we establish some new Hermite‐Ha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical methods in the applied sciences Ročník 44; číslo 6; s. 4985 - 4998
Hlavný autor: Sun, Wenbing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Freiburg Wiley Subscription Services, Inc 01.04.2021
Predmet:
ISSN:0170-4214, 1099-1476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we firstly construct two local fractional integral operators with Mittag‐Leffler kernel on Yang's fractal sets. Then, two local fractional integral identities with the first‐ and second‐order derivatives are derived. With these as auxiliary tools, we establish some new Hermite‐Hadamard–type local fractional integral inequalities involving the local fractional integral operators with Mittag‐Leffler kernel for generalized h‐convex functions. In addition, we obtain some special inequalities when the parameter β and function h take special values. Finally, two examples are given to illustrate the application of the results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.7081