Dynamic Simulation of Continuous Catalytic Reforming Process Based on Simultaneous Solution

The dynamic simulation of the continuous catalytic reforming process is of great significance to the performance prediction and optimization of the entire process. In this study, a 34-lumped mechanism model described by differential algebra was established based on the actual process conditions of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes Jg. 9; H. 8; S. 1347
Hauptverfasser: Zhang, Hanyu, Zhao, Weijie, Jiang, Aipeng, Huang, Qiu-Yun, Wang, Haokun, Ding, Qiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2021
Schlagworte:
ISSN:2227-9717, 2227-9717
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamic simulation of the continuous catalytic reforming process is of great significance to the performance prediction and optimization of the entire process. In this study, a 34-lumped mechanism model described by differential algebra was established based on the actual process conditions of the continuous catalytic reforming process in China, and an efficient dynamic simulation solution method based on simultaneous equations was proposed. First, a 34-lumped differential–algebraic mechanism model was established based on the basic principles of reforming kinetics, thermodynamics, material balance, and energy balance. Secondly, in order to solve and simulate the mechanism model composed of 144 differential equations and several algebraic equations, the method of finite-element collocation is used to discretize the differential equations and convert them into large-scale, nonlinear programming problems, and the interior point algorithm is used to estimate its parameters and verify the model. In addition, in order to avoid the problem of too long derivative solution time and too large memory in the solution process, methods such as sparse derivative and Broyden–Fletcher–Goldfarb–Shanno (BFGS) with limited storage are used to solve the problem. Finally, on the basis of model verification, dynamic simulation and sensitivity analysis of the whole process are carried out by modifying different input parameters. The results show that the mechanism model and solution method presented in this paper can quickly and accurately simulate the continuous catalytic reforming process dynamically.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9081347