Improved AutoEncoder With LSTM Module and KL Divergence for Anomaly Detection

The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep Convolutional AutoEncoder (CAE) and deep support vector data description (SVDD) have been universally used and have demonstrated significant success in detecting anomalies. However, the o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 11
Main Authors: Huang, Wei, Zhang, Bingyang, Zhang, Kaituo, Gao, Hua, Wan, Rongchun
Format: Journal Article
Language:English
Published: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep Convolutional AutoEncoder (CAE) and deep support vector data description (SVDD) have been universally used and have demonstrated significant success in detecting anomalies. However, the over-reconstruction ability of CAE network for anomalous data can easily lead to high false-negative rate in detecting anomalous data. On the other hand, the deep support vector data description (Deep SVDD) model has the drawback of feature collapse, which leads to a decrease in detection accuracy for anomalies. To address these problems, we propose the Improved AutoEncoder with LSTM module and Kullback-Leibler divergence (IAE-LSTM-KL) model in this article. An LSTM network is added after the encoder to memorize feature representations of normal data. Meanwhile, the phenomenon of feature collapse can also be mitigated by penalizing the featured input to SVDD module via KL divergence. The efficacy of the IAE-LSTM-KL model is validated through experiments on both synthetic and real-world datasets. Experimental results show that IAE-LSTM-KL model yields higher detection accuracy for anomalies. In addition, it is also found that the IAE-LSTM-KL model demonstrates enhanced robustness to contaminated outliers in the dataset.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2024.3460931