Nonlinear Programming Problems Associated with Closed Range Operators

Necessary conditions for the optimality of a pair (y-bar, u-bar) with respect to a locally Lipschitz cost functional L(y,u) , subject to Ay + F(y) = Cu + B(u) , are given in terms of generalized gradients. Here A and C are densely defined, closed, linear operators on some Banach spaces, while F and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics & optimization Ročník 40; číslo 2; s. 211 - 228
Hlavní autoři: Aizicovici, S., Pavel, D. Motreanu, N. H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer 01.09.1999
Témata:
ISSN:0095-4616, 1432-0606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Necessary conditions for the optimality of a pair (y-bar, u-bar) with respect to a locally Lipschitz cost functional L(y,u) , subject to Ay + F(y) = Cu + B(u) , are given in terms of generalized gradients. Here A and C are densely defined, closed, linear operators on some Banach spaces, while F and B are (Frechet) differentiable maps, which are suitably related to A and C . Various examples and potential applications to nonlinear programming models and nonlinear optimal control of partial differential equations are also discussed.
ISSN:0095-4616
1432-0606
DOI:10.1007/s002459900123