Nonlinear Programming Problems Associated with Closed Range Operators
Necessary conditions for the optimality of a pair (y-bar, u-bar) with respect to a locally Lipschitz cost functional L(y,u) , subject to Ay + F(y) = Cu + B(u) , are given in terms of generalized gradients. Here A and C are densely defined, closed, linear operators on some Banach spaces, while F and...
Uloženo v:
| Vydáno v: | Applied mathematics & optimization Ročník 40; číslo 2; s. 211 - 228 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Springer
01.09.1999
|
| Témata: | |
| ISSN: | 0095-4616, 1432-0606 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Necessary conditions for the optimality of a pair (y-bar, u-bar) with respect to a locally Lipschitz cost functional L(y,u) , subject to Ay + F(y) = Cu + B(u) , are given in terms of generalized gradients. Here A and C are densely defined, closed, linear operators on some Banach spaces, while F and B are (Frechet) differentiable maps, which are suitably related to A and C . Various examples and potential applications to nonlinear programming models and nonlinear optimal control of partial differential equations are also discussed. |
|---|---|
| ISSN: | 0095-4616 1432-0606 |
| DOI: | 10.1007/s002459900123 |