Attacking Defocus Detection With Blur-Aware Transformation for Defocus Deblurring

Previous fully-supervised defocus deblurring has made significant progress. However, training such deep models requires abundant paired ground truth, which is expensive and error-prone. This paper makes an attempt to train a defocus deblurring model without using paired ground truth and any other un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia Jg. 26; S. 1 - 11
Hauptverfasser: Zhao, Wenda, Hu, Guang, Wei, Fei, Wang, Haipeng, He, You, Lu, Huchuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1520-9210, 1941-0077
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!