Equivalent Three-Vector-Based Model Predictive Control With Duty Cycle Reconstruction for PMSM

Conventional model predictive control (MPC) uses a single voltage vector every control cycle which makes the cost function minimized through the enumeration process, which will result in relatively high steady-state fluctuation and significant computational overhead. MPC's steady-state performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) Jg. 71; H. 3; S. 1 - 10
Hauptverfasser: Wu, Xuan, Zhang, Yifeng, Shen, Feifan, Yang, Meizhou, Wu, Ting, Huang, Shoudao, Cui, Hesong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0046, 1557-9948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional model predictive control (MPC) uses a single voltage vector every control cycle which makes the cost function minimized through the enumeration process, which will result in relatively high steady-state fluctuation and significant computational overhead. MPC's steady-state performance can be enhanced by adding duty cycle control and generalized double vector control though this increases the complexity of the control algorithm. To enhance the permanent magnet synchronous motor (PMSM) performance while lowering algorithm complexity, an equivalent three-vector-based model predictive current control with duty cycle reconstruction is proposed. This method eliminates the enumeration process and lowers the computational overhead in the modified voltage vector space. The steady-state performance is further enhanced using the three-phase duty cycle reconstruction. The validity and feasibility of the proposed MPC are confirmed by comparing it with a double-vector-based MPC (DV-MPC) and three three-vector-based MPC (TV-MPC).
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2023.3270517