Architectural Implications of GNN Aggregation Programming Abstractions
Graph neural networks (GNNs) have gained significant popularity due to the powerful capability to extract useful representations from graph data. As the need for efficient GNN computation intensifies, a variety of programming abstractions designed for optimizing GNN Aggregation have emerged to facil...
Gespeichert in:
| Veröffentlicht in: | IEEE computer architecture letters Jg. 23; H. 1; S. 125 - 128 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1556-6056, 1556-6064 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Graph neural networks (GNNs) have gained significant popularity due to the powerful capability to extract useful representations from graph data. As the need for efficient GNN computation intensifies, a variety of programming abstractions designed for optimizing GNN Aggregation have emerged to facilitate acceleration. However, there is no comprehensive evaluation and analysis upon existing abstractions, thus no clear consensus on which approach is better. In this letter, we classify existing programming abstractions for GNN Aggregation by the dimension of data organization and propagation method. By constructing these abstractions on a state-of-the-art GNN library, we perform a thorough and detailed characterization study to compare their performance and efficiency, and provide several insights on future GNN acceleration based on our analysis. |
|---|---|
| AbstractList | Graph neural networks (GNNs) have gained significant popularity due to the powerful capability to extract useful representations from graph data. As the need for efficient GNN computation intensifies, a variety of programming abstractions designed for optimizing GNN Aggregation have emerged to facilitate acceleration. However, there is no comprehensive evaluation and analysis upon existing abstractions, thus no clear consensus on which approach is better. In this letter, we classify existing programming abstractions for GNN Aggregation by the dimension of data organization and propagation method. By constructing these abstractions on a state-of-the-art GNN library, we perform a thorough and detailed characterization study to compare their performance and efficiency, and provide several insights on future GNN acceleration based on our analysis. |
| Author | Qiao, Tong Qi, Yingjie Yang, Jianlei Hu, Chunming Zhou, Ao |
| Author_xml | – sequence: 1 givenname: Yingjie orcidid: 0009-0009-2785-4480 surname: Qi fullname: Qi, Yingjie email: yingjieqi@buaa.edu.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Jianlei orcidid: 0000-0001-8424-7040 surname: Yang fullname: Yang, Jianlei email: jianlei@buaa.edu.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Ao orcidid: 0009-0008-1440-1493 surname: Zhou fullname: Zhou, Ao email: aozhou@buaa.edu.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Tong orcidid: 0009-0006-6018-8414 surname: Qiao fullname: Qiao, Tong email: by2006149@buaa.edu.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Chunming orcidid: 0000-0003-3473-9703 surname: Hu fullname: Hu, Chunming email: hucm@buaa.edu.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China |
| BookMark | eNp9kL1PwzAQxS1UJNrCzsAQiTnlbCeOPUYV_ZCqwgCz5ThOcJXExU4H_nvSDyHEwHSn0_vd3XsTNOpcZxC6xzDDGMTTZp7PCBA6o5QwnMEVGuM0ZTEDlox--pTdoEkIO4CEUZ6M0SL3-sP2RvcHr5po3e4bq1VvXRciV0XL7TbK69qb-jSLXr2rvWpb29VRXoTeK33S3qLrSjXB3F3qFL0vnt_mq3jzslzP802siSB9LCqNmeClKI1KsiqtjCl0mlAFQnGTcV6UJBMcE1NSlQkoGSGgGKOFAiWKhE7R43nv3rvPgwm93LmD74aTkg5GMxggMqjYWaW9C8GbSmrbnwwMD9tGYpDHzOSQmTxmJi-ZDSD8Affetsp__Yc8nBFrjPklJ5wD5fQbRXh46A |
| CODEN | ICALC3 |
| CitedBy_id | crossref_primary_10_1109_LCA_2025_3539371 crossref_primary_10_1109_TC_2025_3588317 |
| Cites_doi | 10.1145/3466752.3480113 10.1145/3477141 10.1145/3575693.3575723 10.1109/MICRO50266.2020.00079 10.1109/HPCA47549.2020.00012 10.1145/3447786.3456229 10.1145/3442381.3449882 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LCA.2023.3326170 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1556-6064 |
| EndPage | 128 |
| ExternalDocumentID | 10_1109_LCA_2023_3326170 10288038 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072019 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNI RNS RZB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c292t-9fc1698d9dea47f5feebc543a09a8e788bd279812ed3a790d6220a663ba0a9b43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294545700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-6056 |
| IngestDate | Sun Nov 30 03:53:21 EST 2025 Tue Nov 18 22:30:42 EST 2025 Sat Nov 29 01:34:54 EST 2025 Wed Aug 27 02:07:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-9fc1698d9dea47f5feebc543a09a8e788bd279812ed3a790d6220a663ba0a9b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3473-9703 0009-0009-2785-4480 0009-0008-1440-1493 0009-0006-6018-8414 0000-0001-8424-7040 |
| PQID | 3064707902 |
| PQPubID | 75728 |
| PageCount | 4 |
| ParticipantIDs | crossref_citationtrail_10_1109_LCA_2023_3326170 crossref_primary_10_1109_LCA_2023_3326170 ieee_primary_10288038 proquest_journals_3064707902 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan.-June 2024-1-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan.-June |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE computer architecture letters |
| PublicationTitleAbbrev | LCA |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Chen (ref5) Zhang (ref7) ref12 Wang (ref11) ref15 Fey (ref9) ref10 Kipf (ref1) Ma (ref4) Velickovic (ref14) 2017 ref8 Wang (ref2) ref3 ref6 |
| References_xml | – ident: ref6 doi: 10.1145/3466752.3480113 – ident: ref3 doi: 10.1145/3477141 – ident: ref8 doi: 10.1145/3575693.3575723 – ident: ref10 doi: 10.1109/MICRO50266.2020.00079 – volume-title: arXiv:1609.02907 ident: ref1 article-title: Semi-supervised classification with graph convolutional networks – volume-title: arXiv:1909.01315 ident: ref11 article-title: Deep graph library: A graph-centric, highly-performant package for graph neural networks – ident: ref12 doi: 10.1109/HPCA47549.2020.00012 – ident: ref13 doi: 10.1145/3447786.3456229 – volume-title: arXiv:1903.02428 ident: ref9 article-title: Fast graph representation learning with PyTorch geometric – ident: ref15 doi: 10.1145/3442381.3449882 – start-page: 23341 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref2 article-title: How powerful are spectral graph neural networks? – start-page: 1 volume-title: Proc. IEEE/ACM Int. Conf. Comput. Aided Des. ident: ref5 article-title: fuseGNN: Accelerating graph convolutional neural network training on GPGPU – start-page: 443 volume-title: Proc. USENIX Conf. Usenix Annu. Tech. Conf. ident: ref4 article-title: NeuGraph: Parallel deep neural network computation on large graphs – year: 2017 ident: ref14 article-title: Graph attention networks publication-title: arXiv: 1710.10903 – start-page: 467 volume-title: Proc. Mach. Learn. Syst. ident: ref7 article-title: Understanding GNN computational graph: A coordinated computation, IO, and memory perspective |
| SSID | ssj0046384 |
| Score | 2.3205435 |
| Snippet | Graph neural networks (GNNs) have gained significant popularity due to the powerful capability to extract useful representations from graph data. As the need... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125 |
| SubjectTerms | characterization execution patterns Graph neural networks Graph neural networks (GNNs) Graphical representations Graphics processing units Indexes Kernel Organizations Programming programming abstractions Taxonomy |
| Title | Architectural Implications of GNN Aggregation Programming Abstractions |
| URI | https://ieeexplore.ieee.org/document/10288038 https://www.proquest.com/docview/3064707902 |
| Volume | 23 |
| WOSCitedRecordID | wos001294545700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1556-6064 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0046384 issn: 1556-6056 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePDi_Jg4nZKDFw_ZsqRtmmMZToVRdlDYreRzCLrJPvz7TdJ2TkTBWykvpfzykvf9HgA3kihjHWMga2OKIpPEKHV6PyJMxlpTJRIVppaMWZ6n0ymfVMXqoRbGGBOSz0zPP4ZYvl6ojXeV9b0wTDFNG6DBGCuLteprN3KMFELIcZwgp6NvY5KY98fDrOfHhPcoDQ3Iv8mgMFTlx00cxMuo9c8fOwKHlR4Js3Ljj8GemZ-AVj2jAVZH9hSMsq9IgaN_3EkghwsL7_McZjNnc8_COzgp07XenECDmfRukFD3sGqD59Hd0_ABVbMTkCKcrBG3apDwVHNtRMRsbI2RKo6owFykxtm9UhPGnXQ3mgrGsU4IwcKpH1JgwWVEz0BzvpibcwC5lNLZVcnAOuXLKCwUs6kdDBKlqWZYdkC_RrNQVWNxP9_itQgGBuaFw7_w-BcV_h1wu13xXjbV-IO27fHeoSuh7oBuvWNFdexWhTenfMs_TC5-WXYJDtzXo9KJ0gXN9XJjrsC--li_rJbXgaM-AaQFyJo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH64gV6sK1arzsGLh2kzSWbJcShWxTp4UOhtyFoEbaWLv98kM9WKKHgbhhdm-PKSt78HcCGw1MYyRmhMTEKqkzjMrN4f4lTEShHJE-mnlvTTosgGA_ZQF6v7WhittU8-02336GP5aiznzlXWccIwQyRbhfWYUhxV5VqLi5daVvJB5DhOQqulf0YlEev0u3nbDQpvE-JbkH-TQn6syo-72AuYXuOfv7YD27UmGeTV1u_Cih7tQWMxpSGoD-0-9PKvWIGlv11KIQ_GJrguiiAfWqt76N8FD1XC1qsVaUEunCPEVz5MD-Cpd_XYvQnr6QmhxAzPQmZklLBMMaU5TU1stBYypoQjxjNtLV-hcMqsfNeK8JQhlWCMuFVABEecCUoOYW00HukjCJgQwlpWSWSs-qUl4jI1mYmiRCqiUiSa0FmgWcq6tbibcPFSehMDsdLiXzr8yxr_Jlx-rnir2mr8QXvg8F6iq6BuQmuxY2V98KalM6hc0z-Ej39Zdg6bN4_3_bJ_W9ydwJb9Eq1cKi1Ym03m-hQ25PvseTo589z1AT7gy-E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Architectural+Implications+of+GNN+Aggregation+Programming+Abstractions&rft.jtitle=IEEE+computer+architecture+letters&rft.au=Qi%2C+Yingjie&rft.au=Yang%2C+Jianlei&rft.au=Zhou%2C+Ao&rft.au=Qiao%2C+Tong&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1556-6056&rft.eissn=1556-6064&rft.volume=23&rft.issue=1&rft.spage=125&rft_id=info:doi/10.1109%2FLCA.2023.3326170&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6056&client=summon |