ADMM-SLPNet: A Model-Driven Deep Learning Framework for Symbol-Level Precoding

Constructive interference (CI)-based symbol-level precoding (SLP) is an emerging downlink transmission technique for multi-antenna communications systems, and its low-complexity implementations are of practical importance. In this paper, we propose an interpretable model-driven deep learning framewo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 73; číslo 1; s. 1376 - 1381
Hlavní autoři: Yang, Junwen, Li, Ang, Liao, Xuewen, Masouros, Christos
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Constructive interference (CI)-based symbol-level precoding (SLP) is an emerging downlink transmission technique for multi-antenna communications systems, and its low-complexity implementations are of practical importance. In this paper, we propose an interpretable model-driven deep learning framework to accelerate the processing of SLP. Specifically, the network topology is carefully designed by unrolling a parallelizable algorithm based on the proximal Jacobian alternating direction method of multipliers (PJ-ADMM), attaining parallel and distributed architecture. Moreover, the parameters of the iterative PJ-ADMM algorithm are untied to parameterize the network. By incorporating the problem-domain knowledge into the loss function, an unsupervised learning strategy is further proposed to discriminatively train the learnable parameters using unlabeled training data. Simulation results demonstrate significant efficiency improvement of the proposed ADMM-SLPNet over benchmark schemes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2023.3301241