An Interpretable Constructive Algorithm for Incremental Random Weight Neural Networks and Its Application
In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty expla...
Uložené v:
| Vydané v: | IEEE transactions on industrial informatics Ročník 20; číslo 12; s. 13622 - 13632 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!