An Interpretable Constructive Algorithm for Incremental Random Weight Neural Networks and Its Application

In this article, we aim to offer an interpretable learning paradigm for incremental random weight neural networks (IRWNNs). IRWNNs have become a hot research direction of neural network algorithms due to their ease of deployment and fast learning speed. However, existing IRWNNs have difficulty expla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 20; H. 12; S. 13622 - 13632
Hauptverfasser: Nan, Jing, Dai, Wei, Yuan, Guan, Zhou, Ping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!