API Usage Recommendation Via Multi-View Heterogeneous Graph Representation Learning

Developers often need to decide which APIs to use for the functions being implemented. With the ever-growing number of APIs and libraries, it becomes increasingly difficult for developers to find appropriate APIs, indicating the necessity of automatic API usage recommendation. Previous studies adopt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering Jg. 49; H. 5; S. 3289 - 3304
Hauptverfasser: Chen, Yujia, Gao, Cuiyun, Ren, Xiaoxue, Peng, Yun, Xia, Xin, Lyu, Michael R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2023
IEEE Computer Society
Schlagworte:
ISSN:0098-5589, 1939-3520
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Developers often need to decide which APIs to use for the functions being implemented. With the ever-growing number of APIs and libraries, it becomes increasingly difficult for developers to find appropriate APIs, indicating the necessity of automatic API usage recommendation. Previous studies adopt statistical models or collaborative filtering methods to mine the implicit API usage patterns for recommendation. However, they rely on the occurrence frequencies of APIs for mining usage patterns, thus prone to fail for the low-frequency APIs. Besides, prior studies generally regard the API call interaction graph as homogeneous graph, ignoring the rich information (e.g., edge types) in the structure graph. In this work, we propose a novel method named MEGA for improving the recommendation accuracy especially for the low-frequency APIs. Specifically, besides call interaction graph , MEGA considers another two new heterogeneous graphs: global API co-occurrence graph enriched with the API frequency information and hierarchical structure graph enriched with the project component information. With the three multi-view heterogeneous graphs, MEGA can capture the API usage patterns more accurately. Experiments on three Java benchmark datasets demonstrate that MEGA significantly outperforms the baseline models by at least 19% with respect to the Success Rate@1 metric. Especially, for the low-frequency APIs, MEGA also increases the baselines by at least 55% regarding the Success Rate@1 score.
AbstractList Developers often need to decide which APIs to use for the functions being implemented. With the ever-growing number of APIs and libraries, it becomes increasingly difficult for developers to find appropriate APIs, indicating the necessity of automatic API usage recommendation. Previous studies adopt statistical models or collaborative filtering methods to mine the implicit API usage patterns for recommendation. However, they rely on the occurrence frequencies of APIs for mining usage patterns, thus prone to fail for the low-frequency APIs. Besides, prior studies generally regard the API call interaction graph as homogeneous graph, ignoring the rich information (e.g., edge types) in the structure graph. In this work, we propose a novel method named MEGA for improving the recommendation accuracy especially for the low-frequency APIs. Specifically, besides call interaction graph , MEGA considers another two new heterogeneous graphs: global API co-occurrence graph enriched with the API frequency information and hierarchical structure graph enriched with the project component information. With the three multi-view heterogeneous graphs, MEGA can capture the API usage patterns more accurately. Experiments on three Java benchmark datasets demonstrate that MEGA significantly outperforms the baseline models by at least 19% with respect to the Success Rate@1 metric. Especially, for the low-frequency APIs, MEGA also increases the baselines by at least 55% regarding the Success Rate@1 score.
Author Chen, Yujia
Gao, Cuiyun
Peng, Yun
Lyu, Michael R.
Xia, Xin
Ren, Xiaoxue
Author_xml – sequence: 1
  givenname: Yujia
  orcidid: 0000-0003-2901-0643
  surname: Chen
  fullname: Chen, Yujia
  email: yujiachen@stu.hit.edu.cn
  organization: Harbin Institute of Technology, Shenzhen, Guangdong Province, China
– sequence: 2
  givenname: Cuiyun
  orcidid: 0000-0001-8513-6836
  surname: Gao
  fullname: Gao, Cuiyun
  email: gcyydxf@gmail.com
  organization: Harbin Institute of Technology, Shenzhen, Guangdong Province, China
– sequence: 3
  givenname: Xiaoxue
  surname: Ren
  fullname: Ren, Xiaoxue
  email: xiaoxueren@cse.cuhk.edu.hk
  organization: The Chinese University of Hong Kong, Hong Kong
– sequence: 4
  givenname: Yun
  orcidid: 0000-0003-1936-5598
  surname: Peng
  fullname: Peng, Yun
  email: ypeng@cse.cuhk.edu.hk
  organization: The Chinese University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-6302-3256
  surname: Xia
  fullname: Xia, Xin
  email: xin.xia@acm.org
  organization: Software Engineering Application Technology Lab, Huawei, China
– sequence: 6
  givenname: Michael R.
  surname: Lyu
  fullname: Lyu, Michael R.
  email: lyu@cse.cuhk.edu.hk
  organization: The Chinese University of Hong Kong, Hong Kong
BookMark eNp9kD1PwzAQhi1UJNrCzsAQiTnFsWPHHquqtJWKQPRjtZzkXFy1TrETIf49qdIBMTDd8j7v3T0D1HOVA4TuEzxKEiyf1qvpiGBCR5QwQpi8Qv1EUhlTRnAP9TGWImZMyBs0CGGPMWZZxvpoNX5bRJugdxC9Q1Edj-BKXdvKRVuro5fmUNt4a-ErmkMNvtqBg6oJ0czr00dLnDwEcHVHLEF7Z93uFl0bfQhwd5lDtHmerifzePk6W0zGy7ggktRxBkAokbwwJhV5qQVPS25KUVAAMAXhGeQkEYZnmkpTEqKZ4bk2SU6NoRnQIXrsek---mwg1GpfNd61KxURScpSglPZpniXKnwVggejCtsdXHttDyrB6ixQtQLVWaC6CGxB_Ac8eXvU_vs_5KFDbPvCrzhmgjFOfwAuEn7O
CODEN IESEDJ
CitedBy_id crossref_primary_10_1007_s10115_025_02441_2
crossref_primary_10_1109_TR_2024_3361922
crossref_primary_10_1142_S0218194025500275
crossref_primary_10_1002_smr_2658
crossref_primary_10_1016_j_jss_2024_112296
crossref_primary_10_3390_computers14040119
crossref_primary_10_1002_smr_70015
crossref_primary_10_1016_j_engappai_2024_109395
crossref_primary_10_1109_ACCESS_2024_3505943
crossref_primary_10_1145_3712188
crossref_primary_10_1016_j_ipm_2023_103618
crossref_primary_10_1145_3664651
crossref_primary_10_1007_s10515_024_00425_0
crossref_primary_10_1145_3680469
Cites_doi 10.1145/371920.372071
10.1109/WCRE.2011.24
10.1145/2950290.2950319
10.1145/1595696.1595767
10.1109/SANER50967.2021.00013
10.1145/1287624.1287630
10.1109/TNN.2008.2005605
10.1145/3238147.3238216
10.1145/2950290.2950333
10.1109/ASE.2013.6693088
10.1145/3397271.3401142
10.1109/tse.2022.3197063
10.1145/3238147.3238191
10.1145/3269206.3271739
10.1109/ICSE.2019.00109
10.1109/MS.2009.193
10.1109/ICSE.2015.336
10.1109/TSE.2019.2910516
10.1145/2464526.2464552
10.1109/MSR.2013.6624045
10.1007/978-1-4612-4380-9_16
10.1145/3397271.3401141
10.1145/3468264.3473111
10.1007/s11390-019-1956-2
10.1109/ICSE.2012.6227236
10.1007/978-3-642-03013-0_15
10.1109/ASE.2019.00061
10.1145/2950290.2950334
10.1109/ICSM.2012.6405249
10.1198/tech.2006.s437
10.1109/ICSE.2012.6227140
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2023
Copyright_xml – notice: Copyright IEEE Computer Society 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2023.3252259
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 3304
ExternalDocumentID 10_1109_TSE_2023_3252259
10058556
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  grantid: 2023A1515011959
  funderid: 10.13039/501100003453
– fundername: Shenzhen Basic Research
  grantid: JCYJ20220531095214031
– fundername: National Key R&D Program of China
  grantid: 2022YFB3103900
– fundername: Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies
  grantid: 2022B1212010005
– fundername: National Natural Science Foundation of China
  grantid: 62002084
  funderid: 10.13039/501100001809
– fundername: Major Key Project of PCL
  grantid: PCL2022A03; PCL2021A02; PCL2021A09
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EDO
EJD
HZ~
I-F
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
Q2X
RIA
RIE
RNS
RXW
S10
TAE
TN5
TWZ
UHB
UPT
WH7
YZZ
AAYXX
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c292t-7ee23296cff48bda864d6fd8c3eeefc267eb218f67a39fd22a5f6baf1b3ff37e3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991628700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-5589
IngestDate Sun Nov 30 04:20:13 EST 2025
Sat Nov 29 03:10:27 EST 2025
Tue Nov 18 20:53:11 EST 2025
Wed Aug 27 02:22:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7ee23296cff48bda864d6fd8c3eeefc267eb218f67a39fd22a5f6baf1b3ff37e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1936-5598
0000-0001-8513-6836
0000-0002-6302-3256
0000-0003-2901-0643
PQID 2814542049
PQPubID 21418
PageCount 16
ParticipantIDs ieee_primary_10058556
crossref_citationtrail_10_1109_TSE_2023_3252259
proquest_journals_2814542049
crossref_primary_10_1109_TSE_2023_3252259
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2023
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref35
ref12
Glorot (ref27) 2010; 9
ref34
ref15
(ref4) 2022
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Cosmo (ref23) 2017
ref1
ref17
Agarap (ref22) 2018
ref16
ref19
ref18
Kingma (ref28) 2015
ref24
ref26
ref25
ref20
Amann (ref37) 2019
ref21
ref29
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1145/371920.372071
– ident: ref1
  doi: 10.1109/WCRE.2011.24
– ident: ref11
  doi: 10.1145/2950290.2950319
– year: 2022
  ident: ref4
  article-title: JDK 18 documentation
– ident: ref35
  doi: 10.1145/1595696.1595767
– start-page: 265
  volume-title: Proc. IEEE 16th Int. Conf. Mining Softw. Repositories
  year: 2019
  ident: ref37
  article-title: Investigating next steps in static API-misuse detection
– ident: ref14
  doi: 10.1109/SANER50967.2021.00013
– ident: ref7
  doi: 10.1145/1287624.1287630
– ident: ref15
  doi: 10.1109/TNN.2008.2005605
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref28
  article-title: Adam: A method for stochastic optimization
– ident: ref34
  doi: 10.1145/3238147.3238216
– ident: ref26
  doi: 10.1145/2950290.2950333
– ident: ref32
  doi: 10.1109/ASE.2013.6693088
– ident: ref29
  doi: 10.1145/3397271.3401142
– ident: ref16
  doi: 10.1109/tse.2022.3197063
– ident: ref33
  doi: 10.1145/3238147.3238191
– ident: ref20
  doi: 10.1145/3269206.3271739
– volume: 9
  start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  year: 2010
  ident: ref27
  article-title: Understanding the difficulty of training deep feedforward neural networks
– ident: ref12
  doi: 10.1109/ICSE.2019.00109
– ident: ref5
  doi: 10.1109/MS.2009.193
– ident: ref17
  doi: 10.1109/ICSE.2015.336
– volume-title: Proc. 14th Int. Conf. Digit. Preservation
  year: 2017
  ident: ref23
  article-title: Software heritage: Why and how to preserve software source code
– ident: ref2
  doi: 10.1109/TSE.2019.2910516
– ident: ref3
  doi: 10.1145/2464526.2464552
– ident: ref10
  doi: 10.1109/MSR.2013.6624045
– ident: ref31
  doi: 10.1007/978-1-4612-4380-9_16
– ident: ref21
  doi: 10.1145/3397271.3401141
– ident: ref25
  doi: 10.1145/3468264.3473111
– ident: ref19
  doi: 10.1007/s11390-019-1956-2
– ident: ref36
  doi: 10.1109/ICSE.2012.6227236
– ident: ref9
  doi: 10.1007/978-3-642-03013-0_15
– year: 2018
  ident: ref22
  article-title: Deep learning using rectified linear units (RELU)
– ident: ref18
  doi: 10.1109/ASE.2019.00061
– ident: ref24
  doi: 10.1145/2950290.2950334
– ident: ref6
  doi: 10.1109/ICSM.2012.6405249
– ident: ref30
  doi: 10.1198/tech.2006.s437
– ident: ref8
  doi: 10.1109/ICSE.2012.6227140
SSID ssj0005775
ssib053395008
Score 2.5477996
Snippet Developers often need to decide which APIs to use for the functions being implemented. With the ever-growing number of APIs and libraries, it becomes...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3289
SubjectTerms API recommendation
Application programming interface
Benchmark testing
Codes
graph representation learning
Graph representations
Graphical representations
Graphs
Java
multi-view heterogeneous graphs
Programming
Recommender systems
Representation learning
Software
Source coding
Statistical models
Use statistics
Title API Usage Recommendation Via Multi-View Heterogeneous Graph Representation Learning
URI https://ieeexplore.ieee.org/document/10058556
https://www.proquest.com/docview/2814542049
Volume 49
WOSCitedRecordID wos000991628700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005775
  issn: 0098-5589
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YxIELzyHGSzlw4dDR5d3jhDbGBU0aTLtVTeOgSbBObIO_T5K2DAmBxK2H2GrtOLYb2x9CV0yQmHPQkUwAIuehIVLWmijWjIHzv1pZHcAm5MODmk6TUdWsHnphACAUn0HHP4a7fFPka_-rzFl47KJbLhqoIaUom7U29RxS8npAJucqqe8k4-TmcdzveJjwDiUu3PBjSb_5oACq8uMkDu5lsPfPF9tHu1UciXul4g_QFswP0V6N0YArkz1C497oHj_56jHsM81Xx6hEUcKTWYZD-200mcEHHvq6mMJtJyjWS3zn51g7isWmO2mOq1mszy30NOg_3g6jCkghyklCVpEEcIFTInJrmdImU4IZYY3KqfsSmxMhXX7dVVbIjCbWEJJxK3Rmu5paSyXQY9ScF3M4QVhR67gQp1kBLKY0c-EW5MYYzWycKd5GN7Vo07yaMu7BLl7SkG3ESeqUkXplpJUy2uj6i2JRTtj4Y23LC__bulLubXReqy-tbHCZEtVlnBGXAp3-QnaGdjz3sn7xHDVXb2u4QNv5-2q2fLsM2-sTkyrOxg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SXBhPMV45sCFQ0eXV9MjQoMhYEJiIG5V2zhoEmyIbfD3SdIUkBBI3HpI0tZfXNuN7Q_gkEsaC4FFlKSIkbXQGCljdBQXnKO1v4UyhSebSHo99fCQ3oRidV8Lg4g--Qxb7tKf5etROXW_yqyGx9a7FXIW5h11VijX-sroSBJRt8gUQqX1qWScHvdvOy1HFN5i1DocrjHpNyvkaVV-fIu9gTlr_PPRVmA5eJLkpIJ-FWZwuAaNmqWBBKVdh9uTmwty5_LHiIs1n-1CFY8SuR_kxBfgRvcDfCddlxkzshsKR9MxOXedrO2Ml6_6pCEJ3VgfN-DurNM_7UaBSiEqaUonUYJoXadUlsZwVehcSa6l0apk9k1MSWViI-y2MjLJWWo0pbkwsshNu2DGsATZJswNR0PcAqKYsatQi61EHjOWW4cLS611wU2cK9GE41q0WRn6jDu6i6fMxxtxmlkwMgdGFsBowtHnjJeqx8YfYzec8L-Nq-TehN0avixo4Tijqs0FpzYI2v5l2gEsdvvXV9nVRe9yB5bcnapsxl2Ym7xOcQ8WyrfJYPy677faB4Gd0g8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=API+Usage+Recommendation+Via+Multi-View+Heterogeneous+Graph+Representation+Learning&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Chen%2C+Yujia&rft.au=Gao%2C+Cuiyun&rft.au=Ren%2C+Xiaoxue&rft.au=Peng%2C+Yun&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=0098-5589&rft.volume=49&rft.issue=5&rft.spage=3289&rft.epage=3304&rft_id=info:doi/10.1109%2FTSE.2023.3252259&rft.externalDocID=10058556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon