A Systematic Grey-Box Modeling Methodology via Data Reconciliation and SOS Constrained Regression
Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This a...
Gespeichert in:
| Veröffentlicht in: | Processes Jg. 7; H. 3; S. 170 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
23.03.2019
|
| Schlagworte: | |
| ISSN: | 2227-9717, 2227-9717 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the proposed methodology are illustrated through: (1) an academic example and (2) an industrial evaporation plant with real experimental data. |
|---|---|
| AbstractList | Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the proposed methodology are illustrated through: (1) an academic example and (2) an industrial evaporation plant with real experimental data. |
| Author | de Prada, César Pitarch, José Sala, Antonio |
| Author_xml | – sequence: 1 givenname: José orcidid: 0000-0001-5356-6321 surname: Pitarch fullname: Pitarch, José – sequence: 2 givenname: Antonio orcidid: 0000-0002-5691-8772 surname: Sala fullname: Sala, Antonio – sequence: 3 givenname: César orcidid: 0000-0001-6700-9067 surname: de Prada fullname: de Prada, César |
| BookMark | eNptUMFOAjEQbQwmInLwD5p48rDS7bLb9oioaAIhET1vajuLJUuLbTHy9xYxxhjnMpO892bmvVPUsc4CQuc5uSoKQQYbz0hBckaOUJdSyjLBctb5NZ-gfggrkkrkBS-rLpIjvNiFCGsZjcITD7vs2n3gmdPQGrvEM4ivTrvWLXf43Uh8I6PEj6CcVaY1SeQsllbjxXyBx86G6KWxoBNl6SGEBJ-h40a2AfrfvYee726fxvfZdD55GI-mmaKCxozpYVU1qtSEcpVLPZTkhQy1AsJ4WQBJGEhWUSFYU_JKaV7phkoA3fCmEqTooYvD3o13b1sIsV65rbfpZJ38c16WhaCJNTiwlHcheGhqZeKXjf3nbZ2Teh9l_RNlUlz-UWy8WUu_-4f7CaOKdjI |
| CitedBy_id | crossref_primary_10_1016_j_conengprac_2019_104213 crossref_primary_10_3390_en13092300 crossref_primary_10_3390_min11070755 crossref_primary_10_3390_pr8020243 crossref_primary_10_3390_pr7080511 crossref_primary_10_1016_j_conengprac_2024_105841 crossref_primary_10_1016_j_jfoodeng_2021_110594 crossref_primary_10_1016_j_ifacol_2020_12_663 crossref_primary_10_1016_j_ifacol_2020_12_686 crossref_primary_10_1016_j_jwpe_2023_104048 crossref_primary_10_1016_j_engappai_2024_108539 crossref_primary_10_1016_j_compchemeng_2021_107292 crossref_primary_10_1016_j_jfoodeng_2025_112770 crossref_primary_10_1016_j_ifacol_2021_08_274 crossref_primary_10_3390_en14113174 crossref_primary_10_3390_su141710650 crossref_primary_10_1016_j_jprocont_2023_103089 |
| Cites_doi | 10.1007/978-3-642-30023-3 10.1021/ie504735a 10.1016/B978-0-444-64241-7.50141-5 10.1007/s10107-003-0387-5 10.1016/0005-1098(93)90124-C 10.1016/j.jocs.2014.11.002 10.1007/BF01443605 10.1007/978-3-319-58821-6 10.1007/s10107-004-0559-y 10.1016/j.enbuild.2015.02.045 10.1016/S0967-0661(02)00031-X 10.1137/S0036144597321909 10.1137/1.9780898719383 10.1016/j.compchemeng.2014.11.010 10.1007/978-3-642-12239-2 10.1016/j.jprocont.2017.04.002 10.1080/13873954.2012.662777 10.1016/j.compchemeng.2017.12.005 10.1007/s00013-007-2251-y 10.1007/s10107-005-0684-2 10.1016/j.compchemeng.2017.02.010 10.1007/978-3-319-67168-0 10.1007/s10107-018-1289-x 10.1016/0098-1354(92)80030-D 10.1016/j.ifacol.2018.03.088 10.1109/CCA.2007.4389389 10.1145/1089014.1089020 10.1016/S0098-1354(97)00048-3 10.4995/riai.2018.9233 10.1007/BF00138693 10.1109/JSTSP.2007.910971 10.1109/TFUZZ.2017.2704542 10.1512/iumj.1993.42.42045 10.1007/978-1-4757-2868-2 10.1137/S0036144504446096 10.1016/S0098-1354(00)00419-1 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr7030170 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10_3390_pr7030170 |
| GeographicLocations | United States--US Germany Spain |
| GeographicLocations_xml | – name: Spain – name: United States--US – name: Germany |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c292t-7d466fc5d028c1ad4a0b04dce07853e06fcea762997f586cd86df2aeedf8f6903 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464445600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 12:03:06 EDT 2025 Tue Nov 18 21:19:38 EST 2025 Sat Nov 29 07:13:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c292t-7d466fc5d028c1ad4a0b04dce07853e06fcea762997f586cd86df2aeedf8f6903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5691-8772 0000-0001-6700-9067 0000-0001-5356-6321 |
| OpenAccessLink | https://www.proquest.com/docview/2228855392?pq-origsite=%requestingapplication% |
| PQID | 2228855392 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2228855392 crossref_citationtrail_10_3390_pr7030170 crossref_primary_10_3390_pr7030170 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-23 |
| PublicationDateYYYYMMDD | 2019-03-23 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Maxeiner (ref_4) 2018; 44 Tulleken (ref_26) 1993; 29 Gill (ref_39) 2005; 47 Llanos (ref_16) 2015; 54 ref_36 ref_35 ref_12 ref_31 ref_30 Zorzetto (ref_11) 2000; 24 Biegler (ref_43) 2006; 106 Lasserre (ref_29) 2007; 89 Wilson (ref_37) 2017; 106 Cozad (ref_19) 2018; 170 Kar (ref_9) 2015; 6 Kalliski (ref_10) 2019; 16 Pitarch (ref_45) 2017; 56 Sahinidis (ref_44) 1996; 8 Scherer (ref_33) 2006; 107 Neumaier (ref_14) 1998; 40 Hindmarsh (ref_38) 2005; 31 ref_24 ref_46 Parrilo (ref_21) 2003; 96 Zou (ref_13) 2018; 26 ref_22 ref_20 ref_42 ref_41 Pitarch (ref_3) 2018; 110 Cozad (ref_18) 2015; 73 ref_40 ref_1 Leibman (ref_27) 1992; 16 Tan (ref_23) 2002; 10 ref_2 Kim (ref_15) 2007; 1 Hilbert (ref_32) 1888; 32 Afram (ref_5) 2015; 94 Schuster (ref_25) 2012; 18 ref_28 ref_8 Hose (ref_17) 2018; 51 Putinar (ref_34) 1993; 42 Olsen (ref_7) 1997; 21 ref_6 |
| References_xml | – ident: ref_28 – ident: ref_41 doi: 10.1007/978-3-642-30023-3 – volume: 54 start-page: 5096 year: 2015 ident: ref_16 article-title: Robust Estimators for Data Reconciliation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie504735a – ident: ref_30 – volume: 44 start-page: 877 year: 2018 ident: ref_4 article-title: Price-based coordination of interconnected systems with access to external markets publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-444-64241-7.50141-5 – volume: 96 start-page: 293 year: 2003 ident: ref_21 article-title: Semidefinite programming relaxations for semialgebraic problems publication-title: Math. Programm. doi: 10.1007/s10107-003-0387-5 – volume: 29 start-page: 285 year: 1993 ident: ref_26 article-title: Grey-box modelling and identification using physical knowledge and bayesian techniques publication-title: Automatica doi: 10.1016/0005-1098(93)90124-C – ident: ref_1 – ident: ref_35 – volume: 6 start-page: 23 year: 2015 ident: ref_9 article-title: A hybrid group decision support system for supplier selection using analytic hierarchy process, fuzzy set theory and neural network publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2014.11.002 – volume: 32 start-page: 342 year: 1888 ident: ref_32 article-title: Ueber die Darstellung definiter Formen als Summe von Formenquadraten publication-title: Mathematische Annalen doi: 10.1007/BF01443605 – ident: ref_42 doi: 10.1007/978-3-319-58821-6 – volume: 106 start-page: 25 year: 2006 ident: ref_43 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Math. Programm. doi: 10.1007/s10107-004-0559-y – volume: 94 start-page: 121 year: 2015 ident: ref_5 article-title: Black-box modeling of residential HVAC system and comparison of gray-box and black-box modeling methods publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.045 – volume: 10 start-page: 673 year: 2002 ident: ref_23 article-title: Grey-box model identification via evolutionary computing publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(02)00031-X – volume: 40 start-page: 636 year: 1998 ident: ref_14 article-title: Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization publication-title: SIAM Rev. doi: 10.1137/S0036144597321909 – ident: ref_24 doi: 10.1137/1.9780898719383 – volume: 73 start-page: 116 year: 2015 ident: ref_18 article-title: A combined first-principles and data-driven approach to model building publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.11.010 – ident: ref_6 – ident: ref_8 – ident: ref_40 doi: 10.1007/978-3-642-12239-2 – ident: ref_31 – volume: 56 start-page: 1 year: 2017 ident: ref_45 article-title: Optimisation of the Resource Efficiency in an Industrial Evaporation System publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.04.002 – volume: 18 start-page: 307 year: 2012 ident: ref_25 article-title: Grey-box modelling of a viscose-fibre drying process publication-title: Math. Comput. Model. Dyn. Syst. doi: 10.1080/13873954.2012.662777 – ident: ref_2 – volume: 110 start-page: 140 year: 2018 ident: ref_3 article-title: Robust integrated production-maintenance scheduling for an evaporation network publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.12.005 – volume: 89 start-page: 390 year: 2007 ident: ref_29 article-title: Sufficient conditions for a real polynomial to be a sum of squares publication-title: Archiv der Mathematik doi: 10.1007/s00013-007-2251-y – volume: 107 start-page: 189 year: 2006 ident: ref_33 article-title: Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs publication-title: Math. Programm. doi: 10.1007/s10107-005-0684-2 – volume: 106 start-page: 785 year: 2017 ident: ref_37 article-title: The ALAMO approach to machine learning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.02.010 – ident: ref_46 doi: 10.1007/978-3-319-67168-0 – ident: ref_12 – volume: 170 start-page: 97 year: 2018 ident: ref_19 article-title: A global MINLP approach to symbolic regression publication-title: Math. Programm. doi: 10.1007/s10107-018-1289-x – volume: 16 start-page: 963 year: 1992 ident: ref_27 article-title: Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(92)80030-D – volume: 51 start-page: 523 year: 2018 ident: ref_17 article-title: Developing Grey-box Dynamic Process Models publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.03.088 – ident: ref_22 doi: 10.1109/CCA.2007.4389389 – ident: ref_36 – volume: 31 start-page: 363 year: 2005 ident: ref_38 article-title: SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/1089014.1089020 – volume: 21 start-page: S193 year: 1997 ident: ref_7 article-title: A rigorous and efficient distillation column model for engineering and training simulators publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(97)00048-3 – volume: 16 start-page: 26 year: 2019 ident: ref_10 article-title: Apoyo a la Toma de Decisión en una Red de Evaporadores Industriales publication-title: Revista Iberoamericana de Automática e Informática Industrial doi: 10.4995/riai.2018.9233 – volume: 8 start-page: 201 year: 1996 ident: ref_44 article-title: BARON: A general purpose global optimization software package publication-title: J. Glob. Optim. doi: 10.1007/BF00138693 – volume: 1 start-page: 606 year: 2007 ident: ref_15 article-title: An Interior-Point Method for Large-Scale ℓ1-Regularized Least Squares publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.910971 – volume: 26 start-page: 1104 year: 2018 ident: ref_13 article-title: A T–S Fuzzy Model Identification Approach Based on a Modified Inter Type-2 FRCM Algorithm publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2704542 – volume: 42 start-page: 969 year: 1993 ident: ref_34 article-title: Positive Polynomials on Compact Semi-algebraic Sets publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1993.42.42045 – ident: ref_20 doi: 10.1007/978-1-4757-2868-2 – volume: 47 start-page: 99 year: 2005 ident: ref_39 article-title: SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization publication-title: SIAM Rev. doi: 10.1137/S0036144504446096 – volume: 24 start-page: 1355 year: 2000 ident: ref_11 article-title: Processing modelling development through artificial neural networks and hybrid models publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00419-1 |
| SSID | ssj0000913856 |
| Score | 2.2322571 |
| Snippet | Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 170 |
| SubjectTerms | Algorithms Artificial intelligence Complexity Convexity Decision making Direct reduction Evaporation Integer programming Knowledge management Methodology Modelling Optimization Polynomials Process controls Regression |
| Title | A Systematic Grey-Box Modeling Methodology via Data Reconciliation and SOS Constrained Regression |
| URI | https://www.proquest.com/docview/2228855392 |
| Volume | 7 |
| WOSCitedRecordID | wos000464445600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH4CygADUA5xlMpCDDAE2iROnAm1UA4hSkRBgilyfaBKVVraUjHx23lO3FIkxMKSxR4sfc_v8sv3ARwqzT3B0XiZ8lzH1zRwOFe-41EZaO0zLkOeiU2EzSZ7fo5i23Ab2rHKiU_MHLXsCdMjPzWdCkYphvOz_ptjVKPM66qV0JiHgmFJcLPRvXjaYzGcl4wGOaGQh9X9aX9gLLxqpIlnw9BPL5yFlsvV_x5qDVZsUklquRUUYU6l67A8QzW4DkV7iYfkyDJNH28Ar5HWlMmZXCGqTr33QYw-mvlLndxl8tJZ452MO5xc8BEnpmBNRaebY0p4KknrvkWM8memN6EkbnnNx2vTTXi6bDyeXztWc8ERbuSOnFD6QaAFlZh3iCqXPq-0K74UClMJ6qkKrimODjSKQk1ZICQLpHY5RlrNNFba3hYspL1UbQOhCD9C7UuXY43nV9tVpkIpI6pk26MVdweOJhAkwhKSm3N2EyxMDFrJFK0dOJhu7ecsHL9tKk1ASuxFHCbfCO3-vbwHS5gLRWa8zPVKsDAavKt9WBTjUWc4KEOh3mjGD2WYv62flDMrM9_PBq7EN3fxyxeg6d7t |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1JT9tAFMefIFSiPVCWVqVlGVVUgoOFM4s9PiAEBUoECZFCJXpyJ7NUkZCTJgHKl-Iz8sZLAAlx49DzjCwvP783b5b_H2DDOsW0QnilZTTgTkSBUpYHTJjIOS6ViVVuNhG3WvLiImlPwV11FsZvq6xiYh6oTV_7OfJtP1MhhcB0vjv4G3jXKL-6WlloFFic2NsbLNlGO40D_L7fKD06PP9-HJSuAoGmCR0HseFR5LQwmFl1XRmuwm7IjbaYLAWzIbZZhSEiSWInZKSNjIyjCnOJkw5rSYbXnYYZ7mGvwUy70Wz_mszqeJVNKaJCwoixJNweDP0_VfdmyI8T39O4nyezo_f_22uYh7ly2Ez2Cs4XYMpmi_DukZjiIiyUYWpENkst7a0lUHukM9GqJj-Q22C__494Bzh_Dp80cwPtfGmBXPcUOVBjRXxJnuneZUEtUZkhnbMO8d6muaOGNdjlT7GBOPsAP1_lwT9CLetn9hMQgYAjzNxQhVUsr3fr0sbGJMKaLhMhXYbN6pOnupRc9_d5mWLp5elIJ3Qsw9dJ10GhM_Jcp5UKirQMNaP0gYjPLzevw-zxefM0PW20Tr7AWxz5JX4zHWUrUBsPr-wqvNHX495ouFZSTeD3axN0D8T6Okk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThsxFL2iAVWwaIGCoKXUqqgEi1Emfsx4FqiiDaERECKlSLAaHD9QJDQJSUrLr_F1XM8jpVLVHYuubY1mxsf3-NrX5wDsWKeYVgheaRkNuBNRoJTlARMmco5LZWKVm03EnY68uEi6c_BQ3YXxZZVVTMwDtRlqv0de9zsVUgik87oryyK6zdbn0W3gHaT8SWtlp1FA5Nje_8T0bbLfbuJYf6K0dfj967egdBgINE3oNIgNjyKnhUGW1Q1luAr7ITfaInEKZkNsswrDRZLETshIGxkZRxXyipMO80qGz30B87gk57QG8932afdytsPjFTeliAo5I8aSsD4a-_nV8MbIT0nwTw7Iia31-n_-JcvwqlxOk4MC_yswZ7NVWHoisrgKK2X4mpDdUmN77w2oA9KbaViTI8Rz8GX4i3hnOH8_n5zmxtr5kQO5GyjSVFNFfKqe6cFNgWaiMkN6Zz3iPU9zpw1rsMt1UVicrcH5s3z4OtSyYWY3gAgEPoKcG6owu-WNfkPa2JhEWNNnIqSbsFsNf6pLKXb_njcppmQeKekMKZvwcdZ1VOiP_K3TVgWQtAxBk_Q3Ot7-u_kDvETYpCftzvE7WMQFYeJr7Cjbgtp0_MO-hwV9Nx1MxtslwAlcPTeAHgHzt0MJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Grey-Box+Modeling+Methodology+via+Data+Reconciliation+and+SOS+Constrained+Regression&rft.jtitle=Processes&rft.au=Pitarch%2C+Jos%C3%A9+Luis&rft.au=Sala%2C+Antonio&rft.au=de+Prada%2C+C%C3%A9sar&rft.date=2019-03-23&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=7&rft.issue=3&rft_id=info:doi/10.3390%2Fpr7030170&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |