A Systematic Grey-Box Modeling Methodology via Data Reconciliation and SOS Constrained Regression

Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes Jg. 7; H. 3; S. 170
Hauptverfasser: Pitarch, José, Sala, Antonio, de Prada, César
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 23.03.2019
Schlagworte:
ISSN:2227-9717, 2227-9717
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the proposed methodology are illustrated through: (1) an academic example and (2) an industrial evaporation plant with real experimental data.
AbstractList Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the proposed methodology are illustrated through: (1) an academic example and (2) an industrial evaporation plant with real experimental data.
Author de Prada, César
Pitarch, José
Sala, Antonio
Author_xml – sequence: 1
  givenname: José
  orcidid: 0000-0001-5356-6321
  surname: Pitarch
  fullname: Pitarch, José
– sequence: 2
  givenname: Antonio
  orcidid: 0000-0002-5691-8772
  surname: Sala
  fullname: Sala, Antonio
– sequence: 3
  givenname: César
  orcidid: 0000-0001-6700-9067
  surname: de Prada
  fullname: de Prada, César
BookMark eNptUMFOAjEQbQwmInLwD5p48rDS7bLb9oioaAIhET1vajuLJUuLbTHy9xYxxhjnMpO892bmvVPUsc4CQuc5uSoKQQYbz0hBckaOUJdSyjLBctb5NZ-gfggrkkrkBS-rLpIjvNiFCGsZjcITD7vs2n3gmdPQGrvEM4ivTrvWLXf43Uh8I6PEj6CcVaY1SeQsllbjxXyBx86G6KWxoBNl6SGEBJ-h40a2AfrfvYee726fxvfZdD55GI-mmaKCxozpYVU1qtSEcpVLPZTkhQy1AsJ4WQBJGEhWUSFYU_JKaV7phkoA3fCmEqTooYvD3o13b1sIsV65rbfpZJ38c16WhaCJNTiwlHcheGhqZeKXjf3nbZ2Teh9l_RNlUlz-UWy8WUu_-4f7CaOKdjI
CitedBy_id crossref_primary_10_1016_j_conengprac_2019_104213
crossref_primary_10_3390_en13092300
crossref_primary_10_3390_min11070755
crossref_primary_10_3390_pr8020243
crossref_primary_10_3390_pr7080511
crossref_primary_10_1016_j_conengprac_2024_105841
crossref_primary_10_1016_j_jfoodeng_2021_110594
crossref_primary_10_1016_j_ifacol_2020_12_663
crossref_primary_10_1016_j_ifacol_2020_12_686
crossref_primary_10_1016_j_jwpe_2023_104048
crossref_primary_10_1016_j_engappai_2024_108539
crossref_primary_10_1016_j_compchemeng_2021_107292
crossref_primary_10_1016_j_jfoodeng_2025_112770
crossref_primary_10_1016_j_ifacol_2021_08_274
crossref_primary_10_3390_en14113174
crossref_primary_10_3390_su141710650
crossref_primary_10_1016_j_jprocont_2023_103089
Cites_doi 10.1007/978-3-642-30023-3
10.1021/ie504735a
10.1016/B978-0-444-64241-7.50141-5
10.1007/s10107-003-0387-5
10.1016/0005-1098(93)90124-C
10.1016/j.jocs.2014.11.002
10.1007/BF01443605
10.1007/978-3-319-58821-6
10.1007/s10107-004-0559-y
10.1016/j.enbuild.2015.02.045
10.1016/S0967-0661(02)00031-X
10.1137/S0036144597321909
10.1137/1.9780898719383
10.1016/j.compchemeng.2014.11.010
10.1007/978-3-642-12239-2
10.1016/j.jprocont.2017.04.002
10.1080/13873954.2012.662777
10.1016/j.compchemeng.2017.12.005
10.1007/s00013-007-2251-y
10.1007/s10107-005-0684-2
10.1016/j.compchemeng.2017.02.010
10.1007/978-3-319-67168-0
10.1007/s10107-018-1289-x
10.1016/0098-1354(92)80030-D
10.1016/j.ifacol.2018.03.088
10.1109/CCA.2007.4389389
10.1145/1089014.1089020
10.1016/S0098-1354(97)00048-3
10.4995/riai.2018.9233
10.1007/BF00138693
10.1109/JSTSP.2007.910971
10.1109/TFUZZ.2017.2704542
10.1512/iumj.1993.42.42045
10.1007/978-1-4757-2868-2
10.1137/S0036144504446096
10.1016/S0098-1354(00)00419-1
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr7030170
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr7030170
GeographicLocations United States--US
Germany
Spain
GeographicLocations_xml – name: Spain
– name: United States--US
– name: Germany
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c292t-7d466fc5d028c1ad4a0b04dce07853e06fcea762997f586cd86df2aeedf8f6903
IEDL.DBID M7P
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464445600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 12:03:06 EDT 2025
Tue Nov 18 21:19:38 EST 2025
Sat Nov 29 07:13:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7d466fc5d028c1ad4a0b04dce07853e06fcea762997f586cd86df2aeedf8f6903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5691-8772
0000-0001-6700-9067
0000-0001-5356-6321
OpenAccessLink https://www.proquest.com/docview/2228855392?pq-origsite=%requestingapplication%
PQID 2228855392
PQPubID 2032344
ParticipantIDs proquest_journals_2228855392
crossref_citationtrail_10_3390_pr7030170
crossref_primary_10_3390_pr7030170
PublicationCentury 2000
PublicationDate 2019-03-23
PublicationDateYYYYMMDD 2019-03-23
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-23
  day: 23
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Maxeiner (ref_4) 2018; 44
Tulleken (ref_26) 1993; 29
Gill (ref_39) 2005; 47
Llanos (ref_16) 2015; 54
ref_36
ref_35
ref_12
ref_31
ref_30
Zorzetto (ref_11) 2000; 24
Biegler (ref_43) 2006; 106
Lasserre (ref_29) 2007; 89
Wilson (ref_37) 2017; 106
Cozad (ref_19) 2018; 170
Kar (ref_9) 2015; 6
Kalliski (ref_10) 2019; 16
Pitarch (ref_45) 2017; 56
Sahinidis (ref_44) 1996; 8
Scherer (ref_33) 2006; 107
Neumaier (ref_14) 1998; 40
Hindmarsh (ref_38) 2005; 31
ref_24
ref_46
Parrilo (ref_21) 2003; 96
Zou (ref_13) 2018; 26
ref_22
ref_20
ref_42
ref_41
Pitarch (ref_3) 2018; 110
Cozad (ref_18) 2015; 73
ref_40
ref_1
Leibman (ref_27) 1992; 16
Tan (ref_23) 2002; 10
ref_2
Kim (ref_15) 2007; 1
Hilbert (ref_32) 1888; 32
Afram (ref_5) 2015; 94
Schuster (ref_25) 2012; 18
ref_28
ref_8
Hose (ref_17) 2018; 51
Putinar (ref_34) 1993; 42
Olsen (ref_7) 1997; 21
ref_6
References_xml – ident: ref_28
– ident: ref_41
  doi: 10.1007/978-3-642-30023-3
– volume: 54
  start-page: 5096
  year: 2015
  ident: ref_16
  article-title: Robust Estimators for Data Reconciliation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie504735a
– ident: ref_30
– volume: 44
  start-page: 877
  year: 2018
  ident: ref_4
  article-title: Price-based coordination of interconnected systems with access to external markets
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-444-64241-7.50141-5
– volume: 96
  start-page: 293
  year: 2003
  ident: ref_21
  article-title: Semidefinite programming relaxations for semialgebraic problems
  publication-title: Math. Programm.
  doi: 10.1007/s10107-003-0387-5
– volume: 29
  start-page: 285
  year: 1993
  ident: ref_26
  article-title: Grey-box modelling and identification using physical knowledge and bayesian techniques
  publication-title: Automatica
  doi: 10.1016/0005-1098(93)90124-C
– ident: ref_1
– ident: ref_35
– volume: 6
  start-page: 23
  year: 2015
  ident: ref_9
  article-title: A hybrid group decision support system for supplier selection using analytic hierarchy process, fuzzy set theory and neural network
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2014.11.002
– volume: 32
  start-page: 342
  year: 1888
  ident: ref_32
  article-title: Ueber die Darstellung definiter Formen als Summe von Formenquadraten
  publication-title: Mathematische Annalen
  doi: 10.1007/BF01443605
– ident: ref_42
  doi: 10.1007/978-3-319-58821-6
– volume: 106
  start-page: 25
  year: 2006
  ident: ref_43
  article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
  publication-title: Math. Programm.
  doi: 10.1007/s10107-004-0559-y
– volume: 94
  start-page: 121
  year: 2015
  ident: ref_5
  article-title: Black-box modeling of residential HVAC system and comparison of gray-box and black-box modeling methods
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.045
– volume: 10
  start-page: 673
  year: 2002
  ident: ref_23
  article-title: Grey-box model identification via evolutionary computing
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(02)00031-X
– volume: 40
  start-page: 636
  year: 1998
  ident: ref_14
  article-title: Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144597321909
– ident: ref_24
  doi: 10.1137/1.9780898719383
– volume: 73
  start-page: 116
  year: 2015
  ident: ref_18
  article-title: A combined first-principles and data-driven approach to model building
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.11.010
– ident: ref_6
– ident: ref_8
– ident: ref_40
  doi: 10.1007/978-3-642-12239-2
– ident: ref_31
– volume: 56
  start-page: 1
  year: 2017
  ident: ref_45
  article-title: Optimisation of the Resource Efficiency in an Industrial Evaporation System
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.04.002
– volume: 18
  start-page: 307
  year: 2012
  ident: ref_25
  article-title: Grey-box modelling of a viscose-fibre drying process
  publication-title: Math. Comput. Model. Dyn. Syst.
  doi: 10.1080/13873954.2012.662777
– ident: ref_2
– volume: 110
  start-page: 140
  year: 2018
  ident: ref_3
  article-title: Robust integrated production-maintenance scheduling for an evaporation network
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.12.005
– volume: 89
  start-page: 390
  year: 2007
  ident: ref_29
  article-title: Sufficient conditions for a real polynomial to be a sum of squares
  publication-title: Archiv der Mathematik
  doi: 10.1007/s00013-007-2251-y
– volume: 107
  start-page: 189
  year: 2006
  ident: ref_33
  article-title: Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs
  publication-title: Math. Programm.
  doi: 10.1007/s10107-005-0684-2
– volume: 106
  start-page: 785
  year: 2017
  ident: ref_37
  article-title: The ALAMO approach to machine learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.010
– ident: ref_46
  doi: 10.1007/978-3-319-67168-0
– ident: ref_12
– volume: 170
  start-page: 97
  year: 2018
  ident: ref_19
  article-title: A global MINLP approach to symbolic regression
  publication-title: Math. Programm.
  doi: 10.1007/s10107-018-1289-x
– volume: 16
  start-page: 963
  year: 1992
  ident: ref_27
  article-title: Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(92)80030-D
– volume: 51
  start-page: 523
  year: 2018
  ident: ref_17
  article-title: Developing Grey-box Dynamic Process Models
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.03.088
– ident: ref_22
  doi: 10.1109/CCA.2007.4389389
– ident: ref_36
– volume: 31
  start-page: 363
  year: 2005
  ident: ref_38
  article-title: SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/1089014.1089020
– volume: 21
  start-page: S193
  year: 1997
  ident: ref_7
  article-title: A rigorous and efficient distillation column model for engineering and training simulators
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(97)00048-3
– volume: 16
  start-page: 26
  year: 2019
  ident: ref_10
  article-title: Apoyo a la Toma de Decisión en una Red de Evaporadores Industriales
  publication-title: Revista Iberoamericana de Automática e Informática Industrial
  doi: 10.4995/riai.2018.9233
– volume: 8
  start-page: 201
  year: 1996
  ident: ref_44
  article-title: BARON: A general purpose global optimization software package
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF00138693
– volume: 1
  start-page: 606
  year: 2007
  ident: ref_15
  article-title: An Interior-Point Method for Large-Scale ℓ1-Regularized Least Squares
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910971
– volume: 26
  start-page: 1104
  year: 2018
  ident: ref_13
  article-title: A T–S Fuzzy Model Identification Approach Based on a Modified Inter Type-2 FRCM Algorithm
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2704542
– volume: 42
  start-page: 969
  year: 1993
  ident: ref_34
  article-title: Positive Polynomials on Compact Semi-algebraic Sets
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1993.42.42045
– ident: ref_20
  doi: 10.1007/978-1-4757-2868-2
– volume: 47
  start-page: 99
  year: 2005
  ident: ref_39
  article-title: SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144504446096
– volume: 24
  start-page: 1355
  year: 2000
  ident: ref_11
  article-title: Processing modelling development through artificial neural networks and hybrid models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00419-1
SSID ssj0000913856
Score 2.2322571
Snippet Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 170
SubjectTerms Algorithms
Artificial intelligence
Complexity
Convexity
Decision making
Direct reduction
Evaporation
Integer programming
Knowledge management
Methodology
Modelling
Optimization
Polynomials
Process controls
Regression
Title A Systematic Grey-Box Modeling Methodology via Data Reconciliation and SOS Constrained Regression
URI https://www.proquest.com/docview/2228855392
Volume 7
WOSCitedRecordID wos000464445600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH4CygADUA5xlMpCDDAE2iROnAm1UA4hSkRBgilyfaBKVVraUjHx23lO3FIkxMKSxR4sfc_v8sv3ARwqzT3B0XiZ8lzH1zRwOFe-41EZaO0zLkOeiU2EzSZ7fo5i23Ab2rHKiU_MHLXsCdMjPzWdCkYphvOz_ptjVKPM66qV0JiHgmFJcLPRvXjaYzGcl4wGOaGQh9X9aX9gLLxqpIlnw9BPL5yFlsvV_x5qDVZsUklquRUUYU6l67A8QzW4DkV7iYfkyDJNH28Ar5HWlMmZXCGqTr33QYw-mvlLndxl8tJZ452MO5xc8BEnpmBNRaebY0p4KknrvkWM8memN6EkbnnNx2vTTXi6bDyeXztWc8ERbuSOnFD6QaAFlZh3iCqXPq-0K74UClMJ6qkKrimODjSKQk1ZICQLpHY5RlrNNFba3hYspL1UbQOhCD9C7UuXY43nV9tVpkIpI6pk26MVdweOJhAkwhKSm3N2EyxMDFrJFK0dOJhu7ecsHL9tKk1ASuxFHCbfCO3-vbwHS5gLRWa8zPVKsDAavKt9WBTjUWc4KEOh3mjGD2WYv62flDMrM9_PBq7EN3fxyxeg6d7t
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1JT9tAFMefIFSiPVCWVqVlGVVUgoOFM4s9PiAEBUoECZFCJXpyJ7NUkZCTJgHKl-Iz8sZLAAlx49DzjCwvP783b5b_H2DDOsW0QnilZTTgTkSBUpYHTJjIOS6ViVVuNhG3WvLiImlPwV11FsZvq6xiYh6oTV_7OfJtP1MhhcB0vjv4G3jXKL-6WlloFFic2NsbLNlGO40D_L7fKD06PP9-HJSuAoGmCR0HseFR5LQwmFl1XRmuwm7IjbaYLAWzIbZZhSEiSWInZKSNjIyjCnOJkw5rSYbXnYYZ7mGvwUy70Wz_mszqeJVNKaJCwoixJNweDP0_VfdmyI8T39O4nyezo_f_22uYh7ly2Ez2Cs4XYMpmi_DukZjiIiyUYWpENkst7a0lUHukM9GqJj-Q22C__494Bzh_Dp80cwPtfGmBXPcUOVBjRXxJnuneZUEtUZkhnbMO8d6muaOGNdjlT7GBOPsAP1_lwT9CLetn9hMQgYAjzNxQhVUsr3fr0sbGJMKaLhMhXYbN6pOnupRc9_d5mWLp5elIJ3Qsw9dJ10GhM_Jcp5UKirQMNaP0gYjPLzevw-zxefM0PW20Tr7AWxz5JX4zHWUrUBsPr-wqvNHX495ouFZSTeD3axN0D8T6Okk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThsxFL2iAVWwaIGCoKXUqqgEi1Emfsx4FqiiDaERECKlSLAaHD9QJDQJSUrLr_F1XM8jpVLVHYuubY1mxsf3-NrX5wDsWKeYVgheaRkNuBNRoJTlARMmco5LZWKVm03EnY68uEi6c_BQ3YXxZZVVTMwDtRlqv0de9zsVUgik87oryyK6zdbn0W3gHaT8SWtlp1FA5Nje_8T0bbLfbuJYf6K0dfj967egdBgINE3oNIgNjyKnhUGW1Q1luAr7ITfaInEKZkNsswrDRZLETshIGxkZRxXyipMO80qGz30B87gk57QG8932afdytsPjFTeliAo5I8aSsD4a-_nV8MbIT0nwTw7Iia31-n_-JcvwqlxOk4MC_yswZ7NVWHoisrgKK2X4mpDdUmN77w2oA9KbaViTI8Rz8GX4i3hnOH8_n5zmxtr5kQO5GyjSVFNFfKqe6cFNgWaiMkN6Zz3iPU9zpw1rsMt1UVicrcH5s3z4OtSyYWY3gAgEPoKcG6owu-WNfkPa2JhEWNNnIqSbsFsNf6pLKXb_njcppmQeKekMKZvwcdZ1VOiP_K3TVgWQtAxBk_Q3Ot7-u_kDvETYpCftzvE7WMQFYeJr7Cjbgtp0_MO-hwV9Nx1MxtslwAlcPTeAHgHzt0MJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Grey-Box+Modeling+Methodology+via+Data+Reconciliation+and+SOS+Constrained+Regression&rft.jtitle=Processes&rft.au=Pitarch%2C+Jos%C3%A9+Luis&rft.au=Sala%2C+Antonio&rft.au=de+Prada%2C+C%C3%A9sar&rft.date=2019-03-23&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=7&rft.issue=3&rft_id=info:doi/10.3390%2Fpr7030170&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon