Harnessing Generative Modeling and Autoencoders Against Adversarial Threats in Autonomous Vehicles

The safety and security of Autonomous Vehicles (AVs) have been an active area of interest and study in recent years. To enable human behavior, Deep Learning (DL) and Machine Learning (ML) models are extensively used to make accurate decisions. However, the DL and ML models are susceptible to various...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on consumer electronics Vol. 70; no. 3; pp. 6216 - 6223
Main Authors: Raja, Kathiroli, Theerthagiri, Sudhakar, Swaminathan, Sriram Venkataraman, Suresh, Sivassri, Raja, Gunasekaran
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0098-3063, 1558-4127
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The safety and security of Autonomous Vehicles (AVs) have been an active area of interest and study in recent years. To enable human behavior, Deep Learning (DL) and Machine Learning (ML) models are extensively used to make accurate decisions. However, the DL and ML models are susceptible to various attacks, like adversarial attacks, leading to miscalculated decisions. Existing solutions defend against adversarial attacks proactively or reactively. To improve the defense methodologies, we propose a novel hybrid Defense Strategy for Autonomous Vehicles against Adversarial Attacks (DSAA), incorporating both reactive and proactive measures with adversarial training with Neural Structured Learning (NSL) and a generative denoising autoencoder to remove the adversarial perturbations. In addition, a randomized channel that adds calculated noise to the model parameter is utilized to encounter white-box and black-box attacks. The experimental results demonstrate that the proposed DSAA effectively mitigates proactive and reactive attacks compared to other existing defense methods, showcasing its performance by achieving an average accuracy of 80.15%.
AbstractList The safety and security of Autonomous Vehicles (AVs) have been an active area of interest and study in recent years. To enable human behavior, Deep Learning (DL) and Machine Learning (ML) models are extensively used to make accurate decisions. However, the DL and ML models are susceptible to various attacks, like adversarial attacks, leading to miscalculated decisions. Existing solutions defend against adversarial attacks proactively or reactively. To improve the defense methodologies, we propose a novel hybrid Defense Strategy for Autonomous Vehicles against Adversarial Attacks (DSAA), incorporating both reactive and proactive measures with adversarial training with Neural Structured Learning (NSL) and a generative denoising autoencoder to remove the adversarial perturbations. In addition, a randomized channel that adds calculated noise to the model parameter is utilized to encounter white-box and black-box attacks. The experimental results demonstrate that the proposed DSAA effectively mitigates proactive and reactive attacks compared to other existing defense methods, showcasing its performance by achieving an average accuracy of 80.15%.
Author Raja, Kathiroli
Swaminathan, Sriram Venkataraman
Suresh, Sivassri
Raja, Gunasekaran
Theerthagiri, Sudhakar
Author_xml – sequence: 1
  givenname: Kathiroli
  orcidid: 0000-0003-0757-6750
  surname: Raja
  fullname: Raja, Kathiroli
  email: kathiroli@mitindia.edu
  organization: Department of Computer Technology, NGNLab, Anna University, MIT Campus, Chennai, India
– sequence: 2
  givenname: Sudhakar
  orcidid: 0000-0002-1396-3223
  surname: Theerthagiri
  fullname: Theerthagiri, Sudhakar
  email: tsudhakar105@gmail.com
  organization: Department of Computer Technology, NGNLab, Anna University, MIT Campus, Chennai, India
– sequence: 3
  givenname: Sriram Venkataraman
  surname: Swaminathan
  fullname: Swaminathan, Sriram Venkataraman
  email: g8sriram@gmail.com
  organization: Department of Computer Technology, NGNLab, Anna University, MIT Campus, Chennai, India
– sequence: 4
  givenname: Sivassri
  orcidid: 0009-0007-2386-0061
  surname: Suresh
  fullname: Suresh, Sivassri
  email: sivassrisuresh@gmail.com
  organization: Department of Computer Technology, NGNLab, Anna University, MIT Campus, Chennai, India
– sequence: 5
  givenname: Gunasekaran
  orcidid: 0000-0002-2253-7648
  surname: Raja
  fullname: Raja, Gunasekaran
  email: dr.r.gunasekaran@ieee.org
  organization: Department of Computer Technology, NGNLab, Anna University, MIT Campus, Chennai, India
BookMark eNp9kDFPwzAQhS1UJNrCzsBgiTnFjp06GaOqtEhFLIU1cuxz6yq1i51W4t-T0A6IgeF0uqf33eneCA2cd4DQPSUTSknxtJ7NJylJ-YRxJjgtrtCQZlmecJqKARoSUuQJI1N2g0Yx7gihPEvzIaqXMjiI0boNXoCDIFt7AvzqNTS9Jp3G5bH14FQnhYjLjbQutrjUp26UwcoGr7cBZBuxdT9e5_f-GPEHbK1qIN6iayObCHeXPkbvz_P1bJms3hYvs3KVqLRI20RwwRRlTAlTkJpTrYSGnAqWKwNGGS54RlKoM1OTQgpJdZYBMUQLzQptDBujx_PeQ_CfR4httfPH4LqTFaOc95u6GqPp2aWCjzGAqZRtu6e9a4O0TUVJ1edZdXlWfZ7VJc8OJH_AQ7B7Gb7-Qx7OiAWAX_ZpyjJO2DcpL4QC
CODEN ITCEDA
CitedBy_id crossref_primary_10_3390_fi17080339
Cites_doi 10.1109/tsc.2024.3359608
10.1016/j.dcan.2020.04.007
10.1109/ACCESS.2019.2951526
10.1109/TCE.2023.3326384
10.1109/ACCESS.2024.3395976
10.1109/TIP.2021.3092582
10.1109/TII.2021.3113130
10.1109/IV51971.2022.9827222
10.1109/MSP.2012.2211477
10.1109/TCE.2023.3283704
10.1109/ACCESS.2019.2939352
10.1007/s11042-023-14702-9
10.1145/3133956.3134057
10.1109/TIP.2019.2940533
10.1109/OJVT.2023.3265363
10.1109/OJITS.2022.3142612
10.1109/CVPR.2016.350
10.1109/SP.2017.49
10.1007/978-3-030-01234-2_23
10.1109/TII.2020.3024643
10.1201/9781351251389-8
10.1109/TITS.2021.3130906
10.1109/ACCESS.2018.2807385
10.1109/TMC.2023.3290955
10.1109/TII.2020.3012166
10.1109/CVPR.2018.00957
10.1109/TCAD.2022.3166112
10.1109/TVT.2021.3127219
10.1109/IJCNN.2011.6033395
10.1016/j.enbenv.2020.05.002
10.1109/TII.2021.3071405
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2024.3437419
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 6223
ExternalDocumentID 10_1109_TCE_2024_3437419
10623540
Genre orig-research
GrantInformation_xml – fundername: NGNLab, Department of Computer Technology, Anna University, MIT Campus, Chennai, India
  funderid: 10.13039/501100005968
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c292t-7473c133c7f90b41dc7de81738cfefcf474502eb5fb09a7a1d55e0f0d7d39dff3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378122400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3063
IngestDate Mon Jun 30 10:13:53 EDT 2025
Tue Nov 18 22:20:18 EST 2025
Sat Nov 29 01:45:45 EST 2025
Wed Aug 27 02:33:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-7473c133c7f90b41dc7de81738cfefcf474502eb5fb09a7a1d55e0f0d7d39dff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2253-7648
0000-0002-1396-3223
0000-0003-0757-6750
0009-0007-2386-0061
PQID 3144173817
PQPubID 85469
PageCount 8
ParticipantIDs crossref_primary_10_1109_TCE_2024_3437419
crossref_citationtrail_10_1109_TCE_2024_3437419
proquest_journals_3144173817
ieee_primary_10623540
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Madry (ref27) 2017
ref2
ref1
ref17
ref19
ref18
Krizhevsky (ref22) 2009
ref23
ref26
ref25
Goodfellow (ref36)
ref20
ref28
Goodfellow (ref24) 2014
ref29
ref8
ref7
Tramèr (ref16)
ref9
ref4
ref3
ref6
ref5
Xiao (ref21) 2017
References_xml – ident: ref35
  doi: 10.1109/tsc.2024.3359608
– ident: ref6
  doi: 10.1016/j.dcan.2020.04.007
– ident: ref11
  doi: 10.1109/ACCESS.2019.2951526
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref16
  article-title: Ensemble adversarial training: Attacks and defenses
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref36
  article-title: Explaining and harnessing adversarial examples
– ident: ref37
  doi: 10.1109/TCE.2023.3326384
– ident: ref31
  doi: 10.1109/ACCESS.2024.3395976
– ident: ref12
  doi: 10.1109/TIP.2021.3092582
– ident: ref3
  doi: 10.1109/TII.2021.3113130
– ident: ref14
  doi: 10.1109/IV51971.2022.9827222
– ident: ref20
  doi: 10.1109/MSP.2012.2211477
– ident: ref33
  doi: 10.1109/TCE.2023.3283704
– ident: ref9
  doi: 10.1109/ACCESS.2019.2939352
– ident: ref32
  doi: 10.1007/s11042-023-14702-9
– ident: ref8
  doi: 10.1145/3133956.3134057
– ident: ref10
  doi: 10.1109/TIP.2019.2940533
– year: 2009
  ident: ref22
  article-title: Learning multiple layers of features from tiny images
– ident: ref4
  doi: 10.1109/OJVT.2023.3265363
– ident: ref29
  doi: 10.1109/OJITS.2022.3142612
– year: 2014
  ident: ref24
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv:1412.6572
– ident: ref23
  doi: 10.1109/CVPR.2016.350
– ident: ref26
  doi: 10.1109/SP.2017.49
– year: 2017
  ident: ref27
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: arXiv:1706.06083
– ident: ref18
  doi: 10.1007/978-3-030-01234-2_23
– ident: ref13
  doi: 10.1109/TII.2020.3024643
– ident: ref15
  doi: 10.1201/9781351251389-8
– year: 2017
  ident: ref21
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv:1708.07747
– ident: ref17
  doi: 10.1109/TITS.2021.3130906
– ident: ref7
  doi: 10.1109/ACCESS.2018.2807385
– ident: ref34
  doi: 10.1109/TMC.2023.3290955
– ident: ref5
  doi: 10.1109/TII.2020.3012166
– ident: ref25
  doi: 10.1109/CVPR.2018.00957
– ident: ref30
  doi: 10.1109/TCAD.2022.3166112
– ident: ref2
  doi: 10.1109/TVT.2021.3127219
– ident: ref28
  doi: 10.1109/IJCNN.2011.6033395
– ident: ref1
  doi: 10.1016/j.enbenv.2020.05.002
– ident: ref19
  doi: 10.1109/TII.2021.3071405
SSID ssj0014528
Score 2.4170198
Snippet The safety and security of Autonomous Vehicles (AVs) have been an active area of interest and study in recent years. To enable human behavior, Deep Learning...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6216
SubjectTerms Adversarial attacks
Autonomous vehicles
Closed box
Decisions
Deep learning
generative denoising autoencoders
Glass box
Machine learning
neural structured learning
Noise
Noise reduction
Perturbation methods
Training
Vehicles
Title Harnessing Generative Modeling and Autoencoders Against Adversarial Threats in Autonomous Vehicles
URI https://ieeexplore.ieee.org/document/10623540
https://www.proquest.com/docview/3144173817
Volume 70
WOSCitedRecordID wos001378122400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EeNCDPzGiaHrw4mGwrR1dj4RAOBjiAQ23petaITGbYeDf73vdIBijibctaZtlX9v3vfa97xHyACZLRVxLD2yr8XiUGlhzNsVIgFgHKZDy1CUKP4npNJ7P5XOdrO5yYYwxLvjMdPHR3eVnhd7gURmscDDWQDEapCFEv0rW2l0Z8CiMtwKZwIPZ9k7Sl73ZcASeYMi7jDOwoPKbDXJFVX7sxM68jE__-WFn5KTmkXRQAX9ODkx-QY731AUvSTpRK9zI4IVW6tK4tVGsfoY56FTlGR1s1gVKWWI4Mx28qSWwReqKNJcKpyadLZBVlnSZu7Z5gUcF9NUsXDhdi7yMR7PhxKtLKng6lOHaA-eBaXBLtbDST3mQaZGZOBAs1tZYbbngkR-aNLKpL5VQQRZFxrd-JjImM2vZFWnmRW6uCUXFX3BvlGIBA1YAo1gpAXUeaKX7xm-T3vYnJ7rWG8eyF--J8zt8mQAsCcKS1LC0yeOux0eltfFH2xbCsNeuQqBNOlsgk3o1lglDr1GgFuHNL91uyRGOXkX2dUhzvdqYO3KoP9fLcnXvJtoXYg_Qew
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHLx4qKZNapvjIi4rrouHVbyVNE3cBenKPvz9zqTdRREFby0kbemXZL5JZr4BOEeTpWNpVIC21QYyzi3OOZdTJEBqwhxJee4ThTtJt5u-vKjHOlnd58JYa33wmb2kS3-WXwzNlLbKcIajsUaKsQjLsZQRr9K15ocGMo7SmUQmMmExO5Xk6qp3c4u-YCQvhRRoQ9U3K-TLqvxYi72BaW3-89O2YKNmkqxZQb8NC7bcgfUv-oK7kLf1iJYyvGGVvjQtbozqn1EWOtNlwZrTyZDELCmgmTVf9QD5IvNlmseaBifr9YlXjtmg9G3LIW0WsGfb9wF1e_DUuu3dtIO6qEJgIhVNAnQfhEHH1CRO8VyGhUkKm4aJSI2zzjiZyJhHNo9dzpVOdFjEseWOF0khVOGc2IelcljaA2Ck-YsOjtYiFMgL8ClOKcRdhkaba8sbcDX7yZmpFcep8MVb5j0PrjKEJSNYshqWBlzMe7xXaht_tN0jGL60qxBowPEMyKyej-NMkN-YkBrh4S_dzmC13XvoZJ277v0RrNGbqji_Y1iajKb2BFbMx2QwHp36QfcJYpHTwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+Generative+Modeling+and+Autoencoders+Against+Adversarial+Threats+in+Autonomous+Vehicles&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Raja%2C+Kathiroli&rft.au=Theerthagiri%2C+Sudhakar&rft.au=Swaminathan%2C+Sriram+Venkataraman&rft.au=Suresh%2C+Sivassri&rft.date=2024-08-01&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=3&rft.spage=6216&rft.epage=6223&rft_id=info:doi/10.1109%2FTCE.2024.3437419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCE_2024_3437419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon