Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation

In part I of this paper, we presented a consistent mathematical perspective to the formulations of Hamilton's law and unified the formulations by parametrized form with global approximation. In part II of this paper, we extend the formulations to a proper form to develop high-performance time f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational mechanics Ročník 21; číslo 6; s. 449 - 460
Hlavní autori: Sheng, G., Fung, T. C., Fan, S. C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer 01.06.1998
Berlin Springer Nature B.V
Predmet:
ISSN:0178-7675, 1432-0924
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In part I of this paper, we presented a consistent mathematical perspective to the formulations of Hamilton's law and unified the formulations by parametrized form with global approximation. In part II of this paper, we extend the formulations to a proper form to develop high-performance time finite elements for numerical solutions of dynamic problems. The two-field mixed formulations are emphasized and the particular features of using lower order interpolation functions are discussed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-7675
1432-0924
DOI:10.1007/s004660050324