Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation
In part I of this paper, we presented a consistent mathematical perspective to the formulations of Hamilton's law and unified the formulations by parametrized form with global approximation. In part II of this paper, we extend the formulations to a proper form to develop high-performance time f...
Uložené v:
| Vydané v: | Computational mechanics Ročník 21; číslo 6; s. 449 - 460 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
Springer
01.06.1998
Berlin Springer Nature B.V |
| Predmet: | |
| ISSN: | 0178-7675, 1432-0924 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In part I of this paper, we presented a consistent mathematical perspective to the formulations of Hamilton's law and unified the formulations by parametrized form with global approximation. In part II of this paper, we extend the formulations to a proper form to develop high-performance time finite elements for numerical solutions of dynamic problems. The two-field mixed formulations are emphasized and the particular features of using lower order interpolation functions are discussed. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-7675 1432-0924 |
| DOI: | 10.1007/s004660050324 |