Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation
In part I of this paper, we presented a consistent mathematical perspective to the formulations of Hamilton's law and unified the formulations by parametrized form with global approximation. In part II of this paper, we extend the formulations to a proper form to develop high-performance time f...
Gespeichert in:
| Veröffentlicht in: | Computational mechanics Jg. 21; H. 6; S. 449 - 460 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Heidelberg
Springer
01.06.1998
Berlin Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-7675, 1432-0924 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In part I of this paper, we presented a consistent mathematical perspective to the formulations of Hamilton's law and unified the formulations by parametrized form with global approximation. In part II of this paper, we extend the formulations to a proper form to develop high-performance time finite elements for numerical solutions of dynamic problems. The two-field mixed formulations are emphasized and the particular features of using lower order interpolation functions are discussed. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-7675 1432-0924 |
| DOI: | 10.1007/s004660050324 |