ID-YOLO: A Multimodule Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines

Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 74; s. 1 - 11
Hlavní autoři: Zhang, Qiang, Zhang, Jianing, Li, Ying, Zhu, Changfei, Wang, Guifang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects (IDs) are of paramount importance. Considering the inadequacy of the you only look once (YOLO) series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called ID-YOLO to address this challenge. First, we develop the global convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-global pooling fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the multiscale information fusion (MSIF) module to balance the algorithm's detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the weighted feature information fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm's localization precision and accelerating convergence speed. The experimental results indicate that ID-YOLO achieves an average precision (AP) of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. In addition, ID-YOLO achieves a detection speed of 90 frames per second (FPS), meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multiobject and small-object detection, showcasing its potential application in detecting IDs in power transmission lines.
AbstractList Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe human life and property losses. In the context of drone inspections of power transmission lines, accurate and timely detection and localization of insulator defects (IDs) are of paramount importance. Considering the inadequacy of the you only look once (YOLO) series of algorithms in extracting features of insulators and their defects in complex backgrounds, we have designed a method called ID-YOLO to address this challenge. First, we develop the global convolution (GConv) module to integrate spatial and channel information, thereby enhancing the effectiveness of feature extraction. Second, we built the C3-global pooling fusion (C3-GPF) module, aimed at strengthening focus on key data during the feature extraction and fusion stages. Third, we develop the multiscale information fusion (MSIF) module to balance the algorithm’s detection accuracy and speed, ensuring superior performance in practical applications. Fourth, we built the weighted feature information fusion (WFIF) module to further enhance the fusion capability of key information. Finally, we adopt the SCYLLA-IoU (SIoU) loss function to replace the original CIoU, thereby improving the algorithm’s localization precision and accelerating convergence speed. The experimental results indicate that ID-YOLO achieves an average precision (AP) of 90.9%, representing a 3.3% improvement over the baseline YOLOv5s algorithm. In addition, ID-YOLO achieves a detection speed of 90 frames per second (FPS), meeting the requirements for real-time detection. Practical test results demonstrate that the ID-YOLO algorithm significantly improves detection precision while effectively addressing the challenges associated with multiobject and small-object detection, showcasing its potential application in detecting IDs in power transmission lines.
Author Wang, Guifang
Zhu, Changfei
Li, Ying
Zhang, Qiang
Zhang, Jianing
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0002-7859-019X
  surname: Zhang
  fullname: Zhang, Qiang
  email: zqzq53373931@163.com
  organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
– sequence: 2
  givenname: Jianing
  orcidid: 0009-0001-5110-8375
  surname: Zhang
  fullname: Zhang, Jianing
  email: zjn85@foxmail.com
  organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
– sequence: 3
  givenname: Ying
  orcidid: 0009-0006-4445-0697
  surname: Li
  fullname: Li, Ying
  email: liying1982ren@163.com
  organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
– sequence: 4
  givenname: Changfei
  orcidid: 0009-0009-7414-5185
  surname: Zhu
  fullname: Zhu, Changfei
  email: 13663930789@163.com
  organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
– sequence: 5
  givenname: Guifang
  orcidid: 0009-0009-1764-667X
  surname: Wang
  fullname: Wang, Guifang
  email: wgf183520@163.com
  organization: School of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
BookMark eNp9UT1PwzAQtVCRKIWdgcESc8rZie2ErWr5qNSqDGVgihzHAVdpXGxHCH49rtoBMTC90-m9e3fvztGgs51G6IrAmBAobtfz5ZgCZeOUUcFSOEFDwphICs7pAA0BSJ4UGeNn6Nz7DQAInokh0vNZ8rparO7wBC_7NpitrftW49UuluZb13jSvllnwvsWN9bheef7VoZYzXSjVYgQIhjbYdPhZ_upHV472fmt8X7fXZhO-wt02sjW68sjjtDLw_16-pQsVo_z6WSRKFrQkBBJVF4pGTcrqorWUtREyKbm0UkA4TXnmaoECFU0ea51ltcgKc2hYqpJsyIdoZvD3J2zH732odzY3nXRskwJyykBChBZcGApZ713uil3zmyl-yoJlPswyxhmuQ-zPIYZJfyPRJkg92cHJ037n_D6IDRa618-ecriA9IfKJGD6A
CODEN IEIMAO
CitedBy_id crossref_primary_10_1007_s11554_025_01760_5
crossref_primary_10_1109_ACCESS_2025_3569970
Cites_doi 10.1016/j.energy.2021.121558
10.1109/TIM.2023.3305667
10.3390/s23115249
10.1109/CVPR46437.2021.01214
10.1109/TPAMI.2017.2699184
10.1109/TIM.2022.3200861
10.1109/TCYB.2021.3095305
10.3390/en14051426
10.1109/CVPRW50498.2020.00203
10.1109/CVPR.2016.90
10.3390/s22134720
10.1109/CVPR.2017.106
10.1109/CVPR52729.2023.00721
10.48550/arXiv.2205.12740
10.1109/TPWRD.2022.3191694
10.1109/TIM.2022.3201499
10.1016/j.neunet.2017.12.012
10.48550/arXiv.2004.10934
10.1016/j.ijepes.2023.108982
10.48550/arXiv.1511.07122
10.1109/CVPR42600.2020.01079
10.1109/CVPR.2014.81
10.3390/rs15184552
10.1145/3532213.3532300
10.48550/arXiv.2209.02976
10.3390/app132413044
10.1109/ICCV.2015.169
10.l007/978-3-319-46448-0_2
10.48550/ARXIV.1807.06521
10.1007/s11042-023-15722-1
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2016.91
10.1109/ACCESS.2021.3105419
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3527530
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2025_3527530
10835764
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China Program
  grantid: 62203197
  funderid: 10.13039/501100001809
– fundername: Liaoning Provincial Doctoral Research Start-Up Fund Support Project
  grantid: 2022-BS-330
  funderid: 10.13039/501100020224
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c292t-1a1c8bca6479bb2da7d17afd6fec7016d664cb707c9f88ee48d0a2280b5cf3493
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403229900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:17:12 EDT 2025
Tue Nov 18 22:18:27 EST 2025
Sat Nov 29 04:38:58 EST 2025
Wed Aug 27 01:55:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c292t-1a1c8bca6479bb2da7d17afd6fec7016d664cb707c9f88ee48d0a2280b5cf3493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-5110-8375
0009-0009-1764-667X
0009-0006-4445-0697
0000-0002-7859-019X
0009-0009-7414-5185
PQID 3158210200
PQPubID 85462
PageCount 11
ParticipantIDs proquest_journals_3158210200
crossref_primary_10_1109_TIM_2025_3527530
ieee_primary_10835764
crossref_citationtrail_10_1109_TIM_2025_3527530
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Ren (ref6); 28
ref12
ref34
ref15
ref14
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
Redmon (ref11) 2018
References_xml – ident: ref1
  doi: 10.1016/j.energy.2021.121558
– ident: ref7
  doi: 10.1109/TIM.2023.3305667
– ident: ref17
  doi: 10.3390/s23115249
– ident: ref25
  doi: 10.1109/CVPR46437.2021.01214
– ident: ref35
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref23
  doi: 10.1109/TIM.2022.3200861
– ident: ref32
  doi: 10.1109/TCYB.2021.3095305
– ident: ref3
  doi: 10.3390/en14051426
– ident: ref24
  doi: 10.1109/CVPRW50498.2020.00203
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref2
  doi: 10.3390/s22134720
– ident: ref30
  doi: 10.1109/CVPR.2017.106
– ident: ref14
  doi: 10.1109/CVPR52729.2023.00721
– ident: ref33
  doi: 10.48550/arXiv.2205.12740
– ident: ref8
  doi: 10.1109/TPWRD.2022.3191694
– ident: ref22
  doi: 10.1109/TIM.2022.3201499
– ident: ref26
  doi: 10.1016/j.neunet.2017.12.012
– year: 2018
  ident: ref11
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref6
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– ident: ref12
  doi: 10.48550/arXiv.2004.10934
– ident: ref20
  doi: 10.1016/j.ijepes.2023.108982
– ident: ref29
  doi: 10.48550/arXiv.1511.07122
– ident: ref31
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref4
  doi: 10.1109/CVPR.2014.81
– ident: ref18
  doi: 10.3390/rs15184552
– ident: ref21
  doi: 10.1145/3532213.3532300
– ident: ref13
  doi: 10.48550/arXiv.2209.02976
– ident: ref19
  doi: 10.3390/app132413044
– ident: ref5
  doi: 10.1109/ICCV.2015.169
– ident: ref15
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref28
  doi: 10.48550/ARXIV.1807.06521
– ident: ref16
  doi: 10.1007/s11042-023-15722-1
– ident: ref34
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref10
  doi: 10.1109/CVPR.2016.91
– ident: ref9
  doi: 10.1109/ACCESS.2021.3105419
SSID ssj0007647
Score 2.5040355
Snippet Insulators play a crucial role in providing electrical isolation in power transmission lines, and timely detection of their defects is vital to avoid severe...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Computer architecture
Convolution
Data integration
Data mining
Defect detection
Defects
Feature extraction
feature fusion
Frames per second
insulator defect (ID)
Insulators
Localization
Location awareness
Modules
Object recognition
Power lines
Power transmission lines
Real time
real-time detection
YOLO
you only look once (YOLO)
Title ID-YOLO: A Multimodule Optimized Algorithm for Insulator Defect Detection in Power Transmission Lines
URI https://ieeexplore.ieee.org/document/10835764
https://www.proquest.com/docview/3158210200
Volume 74
WOSCitedRecordID wos001403229900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UFPTgs2J9sQcvHmLz3sRbsYqF2vagoqeQzG400CbSph789c5uUqmIgqeEsLtZ9tvHN7PzADhDzv3QlmhwJzUN1wuEEdtJbPgOWkEqHPS1-9hjj_f7wdNTOKyd1bUvjJRSG5_JC_Wq7_JFgTOlKqMVTnyB--4yLNMvKmetr22XvlcBMi1awUQL5neSZti6796RJGh7F8Q2iJ6b384gnVTlx06sj5ebrX92bBs2ax7J2hXwO7Ak813YWIguuAtr2roTp3sgux3jedAbXLI20x6340LMRpINaL8YZx9SsPbopZhk5euYEYllXWWgrqRx1pHK3IMepTbZylmWs6FKrMb0IUeTRGnbWE8Zzzfg4eb6_urWqPMrGGiHdmlYsYVBgjENXJgktoi5sHicCp9a5kQFhe-7mHCTY5gGgZRuIMxYhc9JPEwdN3T2YSUvcnkAzLPTILEQXY8nriN1Ukq0kYQxK-Uy9ZvQmo94hHXwcZUDYxRpIcQMI8IoUhhFNUZNOP-q8VYF3vijbENhslCugqMJx3NUo3ppTiPHUr7BxJLNw1-qHcG6ar1StBzDSjmZyRNYxfcym05O9az7BM001DU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8a3dDgAONLFNjwYRcOgcRx4oRbxYeoFloO3QSnKHl2WKU2RW26w_56np20YkIg7ZRIsZPIP_u937PfB8B3lDKMuUZH-oXriCBSTsbzzAl99KJC-Rja8LFfiez1ovv7-K4JVrexMFpr63ymT82tPctXE5ybrTJa4cQXZChW4GMgBHfrcK2l4KUndYpMj9YwEYPFqaQbnw26t2QL8uCU-AYRdPcfLWTLqrySxVbBXG_-5699gY2GSbJODf0WfNDlNqy_yC-4DavWvxNnO6C7l85DP-mfsw6zMbfjiZqPNOuTxBgP_2rFOqPHyXRY_R4zorGsa1zUjT3OLrVx-KBLZZ22SjYs2Z0prcasmqNpYvbbWGLc53fh5_XV4OLGaSosOMhjXjle5mGUY0YDF-c5V5lUnswKFdKbJZFBFYYCc-lKjIso0lpEys1MAp08wMIXsb8HrXJS6n1gAS-i3EMUgcyFr21ZSuRI5phXSF2EbThbjHiKTfpxUwVjlFozxI1Twig1GKUNRm04WfZ4qlNvvNN212Dyol0NRxuOFqimzeKcpb5nooOJJ7sHb3Q7hs83g9skTbq9H4ewZr5Ub7scQauazvVX-IR_quFs-s3OwGcADNd8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ID-YOLO%3A+A+Multimodule+Optimized+Algorithm+for+Insulator+Defect+Detection+in+Power+Transmission+Lines&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Qiang&rft.au=Zhang%2C+Jianing&rft.au=Li%2C+Ying&rft.au=Zhu%2C+Changfei&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2025.3527530&rft.externalDocID=10835764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon