Efficient Low-Rank Approximation of Matrices Based on Randomized Pivoted Decomposition

Given a matrix <inline-formula><tex-math notation="LaTeX">\bf A</tex-math></inline-formula> with numerical rank <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>, the two-sided orthogonal decomposition (TSOD)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 68; s. 3575 - 3589
Hlavní autoři: Kaloorazi, Maboud F., Chen, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Given a matrix <inline-formula><tex-math notation="LaTeX">\bf A</tex-math></inline-formula> with numerical rank <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>, the two-sided orthogonal decomposition (TSOD) computes a factorization <inline-formula><tex-math notation="LaTeX">{\bf A} = {\bf UDV}^T</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">{\bf U}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\bf V}</tex-math></inline-formula> are orthogonal, and <inline-formula><tex-math notation="LaTeX">{\bf D}</tex-math></inline-formula> is (upper/lower) triangular. TSOD is rank-revealing as the middle factor <inline-formula><tex-math notation="LaTeX">{\bf D}</tex-math></inline-formula> reveals the rank of <inline-formula><tex-math notation="LaTeX">\bf A</tex-math></inline-formula>. The computation of TSOD, however, is demanding. In this paper, we present an algorithm called randomized pivoted TSOD (RP-TSOD), where the middle factor is lower triangular. Key in our work is the exploitation of randomization, and RP-TSOD is primarily devised to efficiently construct an approximation to a low-rank matrix. We provide three different types of bounds for RP-TSOD: (i) we furnish upper bounds on the error of the low-rank approximation, (ii) we bound the <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> approximate principal singular values, and (iii) we derive bounds for the canonical angles between the approximate and the exact singular subspaces. Our bounds describe the characteristics and behavior of our proposed algorithm. Through numerical tests, we show the effectiveness of the devised bounds as well as our proposed algorithm.
AbstractList Given a matrix [Formula Omitted] with numerical rank [Formula Omitted], the two-sided orthogonal decomposition (TSOD) computes a factorization [Formula Omitted], where [Formula Omitted] and [Formula Omitted] are orthogonal, and [Formula Omitted] is (upper/lower) triangular. TSOD is rank-revealing as the middle factor [Formula Omitted] reveals the rank of [Formula Omitted]. The computation of TSOD, however, is demanding. In this paper, we present an algorithm called randomized pivoted TSOD (RP-TSOD), where the middle factor is lower triangular. Key in our work is the exploitation of randomization, and RP-TSOD is primarily devised to efficiently construct an approximation to a low-rank matrix. We provide three different types of bounds for RP-TSOD: (i) we furnish upper bounds on the error of the low-rank approximation, (ii) we bound the [Formula Omitted] approximate principal singular values, and (iii) we derive bounds for the canonical angles between the approximate and the exact singular subspaces. Our bounds describe the characteristics and behavior of our proposed algorithm. Through numerical tests, we show the effectiveness of the devised bounds as well as our proposed algorithm.
Given a matrix <inline-formula><tex-math notation="LaTeX">\bf A</tex-math></inline-formula> with numerical rank <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>, the two-sided orthogonal decomposition (TSOD) computes a factorization <inline-formula><tex-math notation="LaTeX">{\bf A} = {\bf UDV}^T</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">{\bf U}</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">{\bf V}</tex-math></inline-formula> are orthogonal, and <inline-formula><tex-math notation="LaTeX">{\bf D}</tex-math></inline-formula> is (upper/lower) triangular. TSOD is rank-revealing as the middle factor <inline-formula><tex-math notation="LaTeX">{\bf D}</tex-math></inline-formula> reveals the rank of <inline-formula><tex-math notation="LaTeX">\bf A</tex-math></inline-formula>. The computation of TSOD, however, is demanding. In this paper, we present an algorithm called randomized pivoted TSOD (RP-TSOD), where the middle factor is lower triangular. Key in our work is the exploitation of randomization, and RP-TSOD is primarily devised to efficiently construct an approximation to a low-rank matrix. We provide three different types of bounds for RP-TSOD: (i) we furnish upper bounds on the error of the low-rank approximation, (ii) we bound the <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> approximate principal singular values, and (iii) we derive bounds for the canonical angles between the approximate and the exact singular subspaces. Our bounds describe the characteristics and behavior of our proposed algorithm. Through numerical tests, we show the effectiveness of the devised bounds as well as our proposed algorithm.
Author Chen, Jie
Kaloorazi, Maboud F.
Author_xml – sequence: 1
  givenname: Maboud F.
  orcidid: 0000-0003-3385-9244
  surname: Kaloorazi
  fullname: Kaloorazi, Maboud F.
  email: kaloorazi@nwpu.edu.cn
  organization: Center of Intelligent Acoustics and Immersive Communications, School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0003-2306-8860
  surname: Chen
  fullname: Chen, Jie
  email: dr.jie.chen@ieee.org
  organization: Center of Intelligent Acoustics and Immersive Communications, School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kMtPAjEQhxuDiYDeTbxs4nlxui-2R0R8JBiJovHWdLvTpAjbtS2-_nqLEA8ePM20-X2dztcjncY0SMgxhQGlwM7mD7NBAgkMUgCaMrZHupRlNIZsWHRCD3ka5-Xw-YD0nFuETJaxokueJkppqbHx0dS8x_eieYlGbWvNh14Jr00TGRXdCm-1RBedC4d1FC5DrjYr_RVOM_1mfKgXKM2qNU5vqEOyr8TS4dGu9snj5WQ-vo6nd1c349E0lgmjPlYSCiiEymuFyGqsRJVQKZmCsqSISa5KUFXNhKxpLmpWSakEZinkKBhimfbJ6fbd8OPXNTrPF2ZtmzCSJxkdZpTmJQsp2KakNc5ZVLy1YT37ySnwjT0e7PGNPb6zF5DiDyK1_xHirdDL_8CTLagR8XcOozTNSki_AXkXgOQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1049_sil2_12035
crossref_primary_10_1016_j_ins_2020_12_066
crossref_primary_10_1016_j_ins_2023_119464
crossref_primary_10_1016_j_dsp_2024_104472
crossref_primary_10_1109_ACCESS_2023_3288889
crossref_primary_10_1109_TVT_2023_3243244
Cites_doi 10.1137/18M1179432
10.1017/S0962492916000076
10.1137/S0895479896305696
10.1145/1255443.1255449
10.1137/18M1163658
10.1109/TPAMI.2008.79
10.1109/DSW.2018.8439907
10.1561/0400000060
10.1214/11-AOS949
10.1137/1.9780898719697
10.1137/140977898
10.1142/S1793536911000787
10.1137/080731992
10.1137/060673096
10.1137/16M1081270
10.1137/1.9781611970739
10.1109/JSTSP.2018.2869363
10.1016/0024-3795(93)90493-8
10.1109/TSP.2018.2853137
10.1016/S0024-3795(96)00301-1
10.1007/BF02142742
10.1109/ICASSP.2017.7952952
10.1137/S1064827597319519
10.1137/1.9781611971446
10.1137/17M1111590
10.1137/090761793
10.1137/080736417
10.1137/S0036144501387517
10.1137/S0097539704442696
10.1007/s10444-016-9494-8
10.1007/978-3-319-49340-4_23
10.1007/11830924_28
10.1137/120874540
10.1007/978-1-4612-0653-8
10.1006/jcss.2000.1711
10.1090/S0025-5718-1973-0348991-3
10.1016/j.laa.2011.01.017
10.1137/090771806
10.1137/0917055
10.1007/s10208-012-9135-7
10.1137/13092157X
10.1016/0024-3795(87)90103-0
10.1109/JSTSP.2018.2867448
10.1137/080738970
10.1109/TIT.2018.2816685
10.1137/16M1091745
10.1137/110853996
10.1109/TIP.2011.2159730
10.1137/030602678
10.1137/15M1044680
10.1137/130938700
10.1145/3019134
10.1109/FOCS.2006.37
10.1002/nla.404
10.1137/1.9781611971408
10.1145/1039488.1039494
10.1090/pcms/025/04
10.1109/FOCS.2013.21
10.1109/JSTSP.2017.2671789
10.1109/ICASSP.2019.8683284
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2020.3001399
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 3589
ExternalDocumentID 10_1109_TSP_2020_3001399
9113480
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 61671382
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018AAA0102200
  funderid: 10.13039/501100012166
– fundername: Higher Education Discipline Innovation Project; 111 project
  grantid: B18041
  funderid: 10.13039/501100013314
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-fc0606af5dfee9debab21cc9f0881ee25f80fbd9acd15ad9bccfae4305ea9ee83
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543713500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:22:13 EDT 2025
Tue Nov 18 21:24:09 EST 2025
Sat Nov 29 04:10:51 EST 2025
Wed Aug 27 02:41:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fc0606af5dfee9debab21cc9f0881ee25f80fbd9acd15ad9bccfae4305ea9ee83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3385-9244
0000-0003-2306-8860
PQID 2417411589
PQPubID 85478
PageCount 15
ParticipantIDs ieee_primary_9113480
crossref_citationtrail_10_1109_TSP_2020_3001399
crossref_primary_10_1109_TSP_2020_3001399
proquest_journals_2417411589
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref58
ref14
ref53
stewart (ref59) 1990
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
scott (ref65) 2015
musco (ref41) 0
ref51
larsen (ref67) 1998
ref50
golub (ref1) 1996
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref21
ref28
ref27
ref29
wright (ref24) 0
ref60
ref62
ref61
martinsson (ref15) 0
References_xml – ident: ref48
  doi: 10.1137/18M1179432
– ident: ref32
  doi: 10.1017/S0962492916000076
– ident: ref37
  doi: 10.1137/S0895479896305696
– ident: ref52
  doi: 10.1145/1255443.1255449
– ident: ref49
  doi: 10.1137/18M1163658
– ident: ref28
  doi: 10.1109/TPAMI.2008.79
– ident: ref38
  doi: 10.1109/DSW.2018.8439907
– year: 2015
  ident: ref65
  article-title: An I/O-complexity lower bound for all recursive matrix multiplication algorithms by path-routing
– ident: ref56
  doi: 10.1561/0400000060
– ident: ref33
  doi: 10.1214/11-AOS949
– ident: ref43
  doi: 10.1137/1.9780898719697
– ident: ref17
  doi: 10.1137/140977898
– ident: ref64
  doi: 10.1142/S1793536911000787
– ident: ref19
  doi: 10.1137/080731992
– ident: ref55
  doi: 10.1137/060673096
– ident: ref8
  doi: 10.1137/16M1081270
– ident: ref57
  doi: 10.1137/1.9781611970739
– ident: ref39
  doi: 10.1109/JSTSP.2018.2869363
– ident: ref62
  doi: 10.1016/0024-3795(93)90493-8
– ident: ref18
  doi: 10.1109/TSP.2018.2853137
– ident: ref9
  doi: 10.1016/S0024-3795(96)00301-1
– ident: ref4
  doi: 10.1007/BF02142742
– ident: ref30
  doi: 10.1109/ICASSP.2017.7952952
– ident: ref5
  doi: 10.1137/S1064827597319519
– year: 1998
  ident: ref67
  article-title: Efficient algorithms for helioseismic inversion
– ident: ref40
  doi: 10.1137/1.9781611971446
– ident: ref66
  doi: 10.1137/17M1111590
– ident: ref25
  doi: 10.1137/090761793
– ident: ref12
  doi: 10.1137/080736417
– start-page: 1396
  year: 0
  ident: ref41
  article-title: Randomized block krylov methods for stronger and faster approximate singular value decomposition
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref27
  doi: 10.1137/S0036144501387517
– ident: ref11
  doi: 10.1137/S0097539704442696
– ident: ref34
  doi: 10.1007/s10444-016-9494-8
– ident: ref20
  doi: 10.1007/978-3-319-49340-4_23
– ident: ref51
  doi: 10.1007/11830924_28
– year: 1990
  ident: ref59
  publication-title: Matrix Perturbation Theory
– ident: ref14
  doi: 10.1137/120874540
– ident: ref58
  doi: 10.1007/978-1-4612-0653-8
– ident: ref53
  doi: 10.1006/jcss.2000.1711
– ident: ref63
  doi: 10.1090/S0025-5718-1973-0348991-3
– ident: ref60
  doi: 10.1016/j.laa.2011.01.017
– ident: ref13
  doi: 10.1137/090771806
– ident: ref46
  doi: 10.1137/0917055
– ident: ref31
  doi: 10.1007/s10208-012-9135-7
– ident: ref6
  doi: 10.1137/13092157X
– ident: ref2
  doi: 10.1016/0024-3795(87)90103-0
– ident: ref26
  doi: 10.1109/JSTSP.2018.2867448
– ident: ref22
  doi: 10.1137/080738970
– ident: ref23
  doi: 10.1109/TIT.2018.2816685
– ident: ref42
  doi: 10.1137/16M1091745
– ident: ref35
  doi: 10.1137/110853996
– ident: ref29
  doi: 10.1109/TIP.2011.2159730
– ident: ref44
  doi: 10.1137/030602678
– ident: ref7
  doi: 10.1137/15M1044680
– ident: ref16
  doi: 10.1137/130938700
– ident: ref21
  doi: 10.1145/3019134
– ident: ref47
  doi: 10.1109/FOCS.2006.37
– ident: ref61
  doi: 10.1002/nla.404
– ident: ref3
  doi: 10.1137/1.9781611971408
– year: 0
  ident: ref15
– year: 1996
  ident: ref1
  publication-title: Matrix Computations
– ident: ref10
  doi: 10.1145/1039488.1039494
– ident: ref45
  doi: 10.1090/pcms/025/04
– ident: ref54
  doi: 10.1109/FOCS.2013.21
– ident: ref36
  doi: 10.1109/JSTSP.2017.2671789
– start-page: 2080
  year: 0
  ident: ref24
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref50
  doi: 10.1109/ICASSP.2019.8683284
SSID ssj0014496
Score 2.3756177
Snippet Given a matrix <inline-formula><tex-math notation="LaTeX">\bf A</tex-math></inline-formula> with numerical rank <inline-formula><tex-math...
Given a matrix [Formula Omitted] with numerical rank [Formula Omitted], the two-sided orthogonal decomposition (TSOD) computes a factorization [Formula...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3575
SubjectTerms Acoustics
Algorithms
Approximation
Approximation algorithms
Decomposition
dimension reduction
image recovery
low-rank approximation
Machine learning algorithms
Mathematical analysis
Matrix decomposition
Randomization
randomized numerical linear algebra
rank-revealing factorization
Signal processing algorithms
Sparse matrices
Subspaces
Surges
Upper bounds
Title Efficient Low-Rank Approximation of Matrices Based on Randomized Pivoted Decomposition
URI https://ieeexplore.ieee.org/document/9113480
https://www.proquest.com/docview/2417411589
Volume 68
WOSCitedRecordID wos000543713500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7GxAEOvAZiMFAOXJAIa7t0bY4DNnGAaYKBdquaxJEmYEV7gfj1OGk3gUBI3Pqwqyhuks-x85mQEx1zIZs8ZJY8nSH-lyxVDc6Aa09J7gutPVdsIup248FA9ErkbHkWBgBc8hmc20sXy9eZmtmtsjoOzAaP0UFfiaJmflZrGTHg3NXiQrjQYGEcDRYhSU_U-_c9dAQD9E8d4BHfliBXU-XHROxWl87m_9q1RTYKFElbudm3SQlGO2T9C7dghTy2HTkEKtKb7I3dpaMn2rIE4u_D_LQizQy9dQT9MKEXuJhpig9RTmcvww-86w3nGeJRegU277xI7tolD512__KaFUUUmAqEP2VGeeijpCbUBkBokKkMfKWEwenFBwhCE3tGapEq7YepFlIpk4IlAoNUAMSNPVIeZSPYJ1SYKGzieylNwJUOhDEo39QKtNKIJaqkvujXRBUM47bQxXPiPA1PJGiJxFoiKSxRJadLjdecXeMP2Yrt-aVc0elVUluYLimG3yRBWIJIyQ9jcfC71iFZs9_O91JqpDwdz-CIrKr5dDgZH7s_6xMbbM7I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-hgrTxAGwdoowxP_CCNK9J6rTxI19Vp5WqYt3Utyi2z1IFJIiWD_HX7-ykEdMQEm_5uFMsX2z_znf-HcCBSYRUXRFzR57OCf8rnumO4ChMoJUIpTGBLzbRG42S6VSOV-BbfRYGEX3yGX53lz6Wbwp957bK2jQwOyIhB301FiIKytNadcxACF-NiwBDh8dJb7oMSgayPfk1JlcwIg_VQx75zyLkq6r8NxX79aW_-baWbcFGhSPZUWn4D7CC-UdYf8Yu2IQ_Z54eghTZsHjgF1l-yY4chfjjrDyvyArLzj1FP87ZMS1nhtFDkjPF9eyJ7saz-4IQKTtFl3lepXd9gt_9s8nJgFdlFLiOZLjgVgfkpWQ2NhZRGlSZikKtpaUJJkSMYpsEVhmZaRPGmZFKa5uhowLDTCImnW1o5EWOO8Ck7cVdeq-UjYQ2kbSW5LtGo9GG0EQL2st-TXXFMe5KXVyl3tcIZEqWSJ0l0soSLTisNW5Kfo1XZJuu52u5qtNbsLc0XVoNwHlKwISwUhgncvdlra_wbjA5H6bDH6Ofn-G9-065s7IHjcXtHX6BNX2_mM1v9_1f9hcCT9IP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Low-Rank+Approximation+of+Matrices+Based+on+Randomized+Pivoted+Decomposition&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Kaloorazi%2C+Maboud+F.&rft.au=Chen%2C+Jie&rft.date=2020&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=68&rft.spage=3575&rft.epage=3589&rft_id=info:doi/10.1109%2FTSP.2020.3001399&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_3001399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon