Whale Swarm Reinforcement Learning Based Dynamic Cooperation Clustering Method for Cell-Free Massive MIMO Systems
Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the complexity of signal processing significantly. However, DCC formation for all served users simultaneously is a very complicated mixed binary nonlin...
Saved in:
| Published in: | IEEE transactions on vehicular technology Vol. 72; no. 3; pp. 4114 - 4118 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the complexity of signal processing significantly. However, DCC formation for all served users simultaneously is a very complicated mixed binary nonlinear programming problem, a single agent has limited capability to search the optimal schemes. In this paper, we propose a whale swarm reinforcement learning (WSRL) based DCC method. Exploiting multiple searching agent imitated by a group of whales, whale swarm optimization (WOA) algorithm searches the optimal DCC scheme simultaneously and learn the searching experience from each other. Moreover, the reinforcement learning is integrated to select the most efficient hunting action for each whale, which can accelerate the convergence and avoid the local trap. Simulation results demonstrate that the proposed method has better searching ability and higher convergence speed than the existing works. |
|---|---|
| AbstractList | Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the complexity of signal processing significantly. However, DCC formation for all served users simultaneously is a very complicated mixed binary nonlinear programming problem, a single agent has limited capability to search the optimal schemes. In this paper, we propose a whale swarm reinforcement learning (WSRL) based DCC method. Exploiting multiple searching agent imitated by a group of whales, whale swarm optimization (WOA) algorithm searches the optimal DCC scheme simultaneously and learn the searching experience from each other. Moreover, the reinforcement learning is integrated to select the most efficient hunting action for each whale, which can accelerate the convergence and avoid the local trap. Simulation results demonstrate that the proposed method has better searching ability and higher convergence speed than the existing works. |
| Author | Jiang, Jing Zhang, Jiayi Gao, Qiang Wang, Jiechen Chu, Hongyun |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0003-3242-912X surname: Jiang fullname: Jiang, Jing email: jiangjing@xupt.edu.cn organization: Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an, China – sequence: 2 givenname: Jiechen orcidid: 0000-0002-9238-320X surname: Wang fullname: Wang, Jiechen email: jiechen.wang@foxmail.com organization: Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an, China – sequence: 3 givenname: Hongyun orcidid: 0000-0003-1284-4000 surname: Chu fullname: Chu, Hongyun email: hy_chu@foxmail.com organization: Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an, China – sequence: 4 givenname: Qiang orcidid: 0000-0002-1785-987X surname: Gao fullname: Gao, Qiang email: hillfinder@163.com organization: school of Northwest A&F University, Yangling, China – sequence: 5 givenname: Jiayi orcidid: 0000-0003-2434-4329 surname: Zhang fullname: Zhang, Jiayi email: zhangjiayi@bjtu.edu.cn organization: school of Beijing Jiaotong University, Beijing, China |
| BookMark | eNp9kU1LxDAQhoMouH7cBS8Bz12TtE07R62uCrsIuuqxxGaqkTZZk66y_96sKx48eBoGnmeGeWePbFtnkZAjzsacMzidP87HggkxToUQRS63yIhDCgmkOWyTEWO8TCDP8l2yF8JbbLMM-Ii8P72qDun9p_I9vUNjW-cb7NEOdIrKW2Nf6LkKqOnFyqreNLRyboFeDcZZWnXLMKBfQzMcXp2mUacVdl0y8Yh0pkIwH7HezG7p_SqyfTggO63qAh7-1H3yMLmcV9fJ9PbqpjqbJo0APiStYrIsGctyzbnWCjgIELp8blrVAhSRQizSEiRmLC30M5coldRNo1uJbZruk5PN3IV370sMQ_3mlt7GlbUoSglFWbAiUnJDNd6F4LGtGzN8Hzd4Zbqas3odbx3jrdfx1j_xRpH9ERfe9Mqv_lOON4pBxF8c4lc4yPQLm8-Ijg |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128174 crossref_primary_10_1080_0305215X_2024_2366484 crossref_primary_10_1109_TCDS_2024_3504256 crossref_primary_10_1016_j_eswa_2024_124765 crossref_primary_10_1109_TCOMM_2024_3369677 crossref_primary_10_1109_TVT_2024_3465458 crossref_primary_10_1109_JSTSP_2025_3533897 crossref_primary_10_1109_LWC_2025_3581851 |
| Cites_doi | 10.1109/LCOMM.2020.3041640 10.1109/LWC.2017.2734893 10.1109/TCOMM.2020.3047801 10.1109/TWC.2017.2655515 10.1016/j.advengsoft.2016.01.008 10.1109/TVT.2020.2970018 10.1109/TGCN.2017.2770215 10.1109/TVT.2020.3000496 10.1109/JSYST.2019.2960088 10.1109/GLOBECOM42002.2020.9322341 10.1109/TWC.2021.3104743 10.1109/MNET.001.1900287 10.1109/JSAC.2020.3018825 10.1109/GLOBECOM46510.2021.9685221 10.1109/TCOMM.2020.2987311 10.1109/GLOCOMW.2018.8644255 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2022.3222756 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 4118 |
| ExternalDocumentID | 10_1109_TVT_2022_3222756 9954196 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Province grantid: 2022JQ-635 funderid: 10.13039/501100007128 – fundername: National Natural Science Foundation of China grantid: 61871321; 61971027 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-fa06880045d11dda919292d8bcfaf997c29ee73896e4037db16e6a6dccdf6ef33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967083100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:12:41 EDT 2025 Tue Nov 18 22:20:45 EST 2025 Sat Nov 29 02:59:05 EST 2025 Wed Aug 27 02:49:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-fa06880045d11dda919292d8bcfaf997c29ee73896e4037db16e6a6dccdf6ef33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1785-987X 0000-0003-1284-4000 0000-0003-2434-4329 0000-0002-9238-320X 0000-0003-3242-912X |
| PQID | 2786978707 |
| PQPubID | 85454 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9954196 crossref_citationtrail_10_1109_TVT_2022_3222756 crossref_primary_10_1109_TVT_2022_3222756 proquest_journals_2786978707 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref8 doi: 10.1109/LCOMM.2020.3041640 – ident: ref3 doi: 10.1109/LWC.2017.2734893 – ident: ref10 doi: 10.1109/TCOMM.2020.3047801 – ident: ref1 doi: 10.1109/TWC.2017.2655515 – ident: ref15 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref2 doi: 10.1109/TVT.2020.2970018 – ident: ref5 doi: 10.1109/TGCN.2017.2770215 – ident: ref7 doi: 10.1109/TVT.2020.3000496 – ident: ref16 doi: 10.1109/JSYST.2019.2960088 – ident: ref9 doi: 10.1109/GLOBECOM42002.2020.9322341 – ident: ref14 doi: 10.1109/TWC.2021.3104743 – ident: ref11 doi: 10.1109/MNET.001.1900287 – ident: ref12 doi: 10.1109/JSAC.2020.3018825 – ident: ref13 doi: 10.1109/GLOBECOM46510.2021.9685221 – ident: ref4 doi: 10.1109/TCOMM.2020.2987311 – ident: ref6 doi: 10.1109/GLOCOMW.2018.8644255 |
| SSID | ssj0014491 |
| Score | 2.450631 |
| Snippet | Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4114 |
| SubjectTerms | Algorithms Cell-free massive multiple-input multiple-output Clustering Clustering algorithms Convergence Cooperation dynamic cooperation clustering Massive MIMO Nonlinear programming Optimization Reinforcement learning Searching Signal to noise ratio spectral efficiency Whales |
| Title | Whale Swarm Reinforcement Learning Based Dynamic Cooperation Clustering Method for Cell-Free Massive MIMO Systems |
| URI | https://ieeexplore.ieee.org/document/9954196 https://www.proquest.com/docview/2786978707 |
| Volume | 72 |
| WOSCitedRecordID | wos000967083100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BxQADXwVRKMgDCxKhiePG8QiFCoYUBOVjixL7AkilhdLC38d23AgJhMSW4SxZefb52We_B7CPsRF2CrlmbqLtMYqRJ3IaeHEsisIKegXKmk3wXi9-eBBXc3BYvYVBRHv5DI_Mp63lq5GcmqOyltEu0yNmHuY5j8q3WlXFgDHnjhfoCaxpwawk6YtW_66vN4KUHpmqAjdW1d-WIOup8iMR29Wlu_K_fq3CsmOR5LiEfQ3mcLgOS9-0Bevwdv-kcz-5-czGL-QarUCqtGeBxGmqPpITvYQpclqa0pPOaPSK5YAgncHUKCiYoMR6TBPdnHRwMPC6Y0SSaM6t8yRJLpJL4lTPN-C2e9bvnHvOX8GTVAQTr8iM44whdSoIlMqEZnuCqjiXRVYIwXUUIteMJkLmh1zlQYRRFikpVRFhEYabUBuOhrgFpK30Po7KkPpMsVjynOWM8dynSjMKlecNaM1-eSqd-LjxwBikdhPii1SDlBqQUgdSAw6qFq-l8MYfsXUDShXn8GhAc4Zq6mbme0p5HAmTpfj27612YNFYypf3zJpQm4ynuAsL8mPy_D7es4PuC6Xc1C0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBHVFWH7ggEZo4bhwfoVCBIAVBWW5RYk8AqbRQWvh9bMetkEBI3HIYS1aePX722O8B7GJshJ1CrpmbqHmMYuSJnAZeHIuisIJegbJmE7zZjB8exNUY7I_ewiCivXyGB-bT1vJVVw7MUVnVaJfpETMOkzXGqF--1hrVDBhz_niBnsKaGAyLkr6otu5aeitI6YGpK3BjVv1tEbKuKj9SsV1fGvP_69kCzDkeSQ5L4BdhDDtLMPtNXXAZ3u6fdPYnN59Z74Vco5VIlfY0kDhV1UdypBcxRY5LW3pS73ZfsRwSpN4eGA0FE5RYl2mim5M6ttteo4dIEs26daYkyVlySZzu-QrcNk5a9VPPOSx4koqg7xWZ8ZwxtE4FgVKZ0HxPUBXnssgKIbiOQuSa00TI_JCrPIgwyiIlpSoiLMJwFSY63Q6uAakpvZOjMqQ-UyyWPGc5Yzz3qdKcQuV5BarDX55KJz9uXDDaqd2G-CLVIKUGpNSBVIG9UYvXUnrjj9hlA8oozuFRgc0hqqmbm-8p5XEkTJ7i67-32oHp01ZykV6cNc83YMYYzJe3zjZhot8b4BZMyY_-83tv2w7AL9WQ13Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whale+Swarm+Reinforcement+Learning+Based+Dynamic+Cooperation+Clustering+Method+for+Cell-Free+Massive+MIMO+Systems&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Jiang%2C+Jing&rft.au=Wang%2C+Jiechen&rft.au=Chu%2C+Hongyun&rft.au=Gao%2C+Qiang&rft.date=2023-03-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=72&rft.issue=3&rft.spage=4114&rft.epage=4118&rft_id=info:doi/10.1109%2FTVT.2022.3222756&rft.externalDocID=9954196 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |