Whale Swarm Reinforcement Learning Based Dynamic Cooperation Clustering Method for Cell-Free Massive MIMO Systems

Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the complexity of signal processing significantly. However, DCC formation for all served users simultaneously is a very complicated mixed binary nonlin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 72; číslo 3; s. 4114 - 4118
Hlavní autoři: Jiang, Jing, Wang, Jiechen, Chu, Hongyun, Gao, Qiang, Zhang, Jiayi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the complexity of signal processing significantly. However, DCC formation for all served users simultaneously is a very complicated mixed binary nonlinear programming problem, a single agent has limited capability to search the optimal schemes. In this paper, we propose a whale swarm reinforcement learning (WSRL) based DCC method. Exploiting multiple searching agent imitated by a group of whales, whale swarm optimization (WOA) algorithm searches the optimal DCC scheme simultaneously and learn the searching experience from each other. Moreover, the reinforcement learning is integrated to select the most efficient hunting action for each whale, which can accelerate the convergence and avoid the local trap. Simulation results demonstrate that the proposed method has better searching ability and higher convergence speed than the existing works.
AbstractList Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the complexity of signal processing significantly. However, DCC formation for all served users simultaneously is a very complicated mixed binary nonlinear programming problem, a single agent has limited capability to search the optimal schemes. In this paper, we propose a whale swarm reinforcement learning (WSRL) based DCC method. Exploiting multiple searching agent imitated by a group of whales, whale swarm optimization (WOA) algorithm searches the optimal DCC scheme simultaneously and learn the searching experience from each other. Moreover, the reinforcement learning is integrated to select the most efficient hunting action for each whale, which can accelerate the convergence and avoid the local trap. Simulation results demonstrate that the proposed method has better searching ability and higher convergence speed than the existing works.
Author Jiang, Jing
Zhang, Jiayi
Gao, Qiang
Wang, Jiechen
Chu, Hongyun
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-3242-912X
  surname: Jiang
  fullname: Jiang, Jing
  email: jiangjing@xupt.edu.cn
  organization: Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an, China
– sequence: 2
  givenname: Jiechen
  orcidid: 0000-0002-9238-320X
  surname: Wang
  fullname: Wang, Jiechen
  email: jiechen.wang@foxmail.com
  organization: Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an, China
– sequence: 3
  givenname: Hongyun
  orcidid: 0000-0003-1284-4000
  surname: Chu
  fullname: Chu, Hongyun
  email: hy_chu@foxmail.com
  organization: Shaanxi Key Laboratory of Information Communication Network and Security, Xi'an University of Posts and Telecommunications, Xi'an, China
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0002-1785-987X
  surname: Gao
  fullname: Gao, Qiang
  email: hillfinder@163.com
  organization: school of Northwest A&F University, Yangling, China
– sequence: 5
  givenname: Jiayi
  orcidid: 0000-0003-2434-4329
  surname: Zhang
  fullname: Zhang, Jiayi
  email: zhangjiayi@bjtu.edu.cn
  organization: school of Beijing Jiaotong University, Beijing, China
BookMark eNp9kU1LxDAQhoMouH7cBS8Bz12TtE07R62uCrsIuuqxxGaqkTZZk66y_96sKx48eBoGnmeGeWePbFtnkZAjzsacMzidP87HggkxToUQRS63yIhDCgmkOWyTEWO8TCDP8l2yF8JbbLMM-Ii8P72qDun9p_I9vUNjW-cb7NEOdIrKW2Nf6LkKqOnFyqreNLRyboFeDcZZWnXLMKBfQzMcXp2mUacVdl0y8Yh0pkIwH7HezG7p_SqyfTggO63qAh7-1H3yMLmcV9fJ9PbqpjqbJo0APiStYrIsGctyzbnWCjgIELp8blrVAhSRQizSEiRmLC30M5coldRNo1uJbZruk5PN3IV370sMQ_3mlt7GlbUoSglFWbAiUnJDNd6F4LGtGzN8Hzd4Zbqas3odbx3jrdfx1j_xRpH9ERfe9Mqv_lOON4pBxF8c4lc4yPQLm8-Ijg
CODEN ITVTAB
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128174
crossref_primary_10_1080_0305215X_2024_2366484
crossref_primary_10_1109_TCDS_2024_3504256
crossref_primary_10_1016_j_eswa_2024_124765
crossref_primary_10_1109_TCOMM_2024_3369677
crossref_primary_10_1109_TVT_2024_3465458
crossref_primary_10_1109_JSTSP_2025_3533897
crossref_primary_10_1109_LWC_2025_3581851
Cites_doi 10.1109/LCOMM.2020.3041640
10.1109/LWC.2017.2734893
10.1109/TCOMM.2020.3047801
10.1109/TWC.2017.2655515
10.1016/j.advengsoft.2016.01.008
10.1109/TVT.2020.2970018
10.1109/TGCN.2017.2770215
10.1109/TVT.2020.3000496
10.1109/JSYST.2019.2960088
10.1109/GLOBECOM42002.2020.9322341
10.1109/TWC.2021.3104743
10.1109/MNET.001.1900287
10.1109/JSAC.2020.3018825
10.1109/GLOBECOM46510.2021.9685221
10.1109/TCOMM.2020.2987311
10.1109/GLOCOMW.2018.8644255
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3222756
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) - Journals and E-Books
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 4118
ExternalDocumentID 10_1109_TVT_2022_3222756
9954196
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Shaanxi Province
  grantid: 2022JQ-635
  funderid: 10.13039/501100007128
– fundername: National Natural Science Foundation of China
  grantid: 61871321; 61971027
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-fa06880045d11dda919292d8bcfaf997c29ee73896e4037db16e6a6dccdf6ef33
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967083100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:12:41 EDT 2025
Tue Nov 18 22:20:45 EST 2025
Sat Nov 29 02:59:05 EST 2025
Wed Aug 27 02:49:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-fa06880045d11dda919292d8bcfaf997c29ee73896e4037db16e6a6dccdf6ef33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1785-987X
0000-0003-1284-4000
0000-0003-2434-4329
0000-0002-9238-320X
0000-0003-3242-912X
PQID 2786978707
PQPubID 85454
PageCount 5
ParticipantIDs ieee_primary_9954196
crossref_citationtrail_10_1109_TVT_2022_3222756
crossref_primary_10_1109_TVT_2022_3222756
proquest_journals_2786978707
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/LCOMM.2020.3041640
– ident: ref3
  doi: 10.1109/LWC.2017.2734893
– ident: ref10
  doi: 10.1109/TCOMM.2020.3047801
– ident: ref1
  doi: 10.1109/TWC.2017.2655515
– ident: ref15
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref2
  doi: 10.1109/TVT.2020.2970018
– ident: ref5
  doi: 10.1109/TGCN.2017.2770215
– ident: ref7
  doi: 10.1109/TVT.2020.3000496
– ident: ref16
  doi: 10.1109/JSYST.2019.2960088
– ident: ref9
  doi: 10.1109/GLOBECOM42002.2020.9322341
– ident: ref14
  doi: 10.1109/TWC.2021.3104743
– ident: ref11
  doi: 10.1109/MNET.001.1900287
– ident: ref12
  doi: 10.1109/JSAC.2020.3018825
– ident: ref13
  doi: 10.1109/GLOBECOM46510.2021.9685221
– ident: ref4
  doi: 10.1109/TCOMM.2020.2987311
– ident: ref6
  doi: 10.1109/GLOCOMW.2018.8644255
SSID ssj0014491
Score 2.450631
Snippet Dynamic cooperation clustering (DCC) becomes a main enabler for cell-free massive MIMO systems since it can improve the energy efficiency and reduce the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4114
SubjectTerms Algorithms
Cell-free massive multiple-input multiple-output
Clustering
Clustering algorithms
Convergence
Cooperation
dynamic cooperation clustering
Massive MIMO
Nonlinear programming
Optimization
Reinforcement learning
Searching
Signal to noise ratio
spectral efficiency
Whales
Title Whale Swarm Reinforcement Learning Based Dynamic Cooperation Clustering Method for Cell-Free Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/9954196
https://www.proquest.com/docview/2786978707
Volume 72
WOSCitedRecordID wos000967083100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) - Journals and E-Books
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60eNCDb7G-yMGL4Np9tJvmqNWi4KpofdyWNJlVoXbrttW_7ySbFkERvOUwAyFfMjPJZOYD2O9iU9ZDDD0pfEkXFFOsTMh7HFH6kvxL5ttC4Ut-ddV8ehI3M3A4rYVBRPv5DI_M0Obyda7G5qmsZnqX0Y6ZhVnO47JWa5oxqNcdO15AB5jCgklK0he1zkOHLoJheGSyCtxQVX9zQZZT5Ychtt6lvfS_eS3Doosi2XEJ-wrMYH8VFr71FlyD98cXsv3s7lMWb-wWbYNUZd8Cmeup-sxOyIVpdlqS0rNWng-w3BCs1RubDgpGKLEc04zUWQt7Pa9dILKEYm6ykyy5SK6Z63q-Dvfts07r3HP8Cp4KRTDyMmkYZ0xQp4NAayko2hOhbnZVJjMhOEkhcopoYqz7EdfdIMZYxlopncWYRdEGVPp5HzeBkVoQZo1IZDwy5B1Cq6ihJacV1xGNqlCbLHmqXPNxw4HRS-0lxBcpgZQakFIHUhUOphqDsvHGH7JrBpSpnMOjCjsTVFN3MocpTS4Wxkrxrd-1tmHeUMqX_8x2oDIqxrgLc-pj9Dos9uym-wIAxNTT
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6lD6nl0FLaitC0-MClEpvsK-v42C5EiZoNiAbobeXYswUpJGGbwN_v2OtEkUCVevNhRrL82TNjj2c-gHdj7Mg4xNCTwpd0QTHFyoS8xxGlL8m_FL4tFB7w4bBzdyc-1-D9uhYGEe3nM2yaoc3l65lamqeyluldRjtmC3bacRz6VbXWOmcQx44fL6AjTIHBKinpi9bo24iugmHYNHkFbsiqN5yQZVX5xxRb_9I9fN7MXsKBiyPZVQX8EdRw-gpebHQXPIbf33-Q9We3f2X5i31B2yJV2ddA5rqq3rNrcmKafaho6Vk6m82x2hIsnSxNDwUjlFmWaUbqLMXJxOuWiCyjqJssJcv62Sfm-p6fwNfux1Ha8xzDgqdCESy8QhrOGRPW6SDQWgqK90SoO2NVyEIITlKInGKaBGM_4nocJJjIRCuliwSLKDqF7elsiq-BkVoQFu1IFDwy9B1Cq6itJacV1xGN6tBaLXmuXPtxw4Ixye01xBc5gZQbkHIHUh0u1xrzqvXGE7LHBpS1nMOjDo0Vqrk7mw85TS4Rxk7xN__Xegt7vVE2yAf94c0Z7BuC-erXWQO2F-USz2FX_Vn8fCgv7AZ8BDoQ2Bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whale+Swarm+Reinforcement+Learning+Based+Dynamic+Cooperation+Clustering+Method+for+Cell-Free+Massive+MIMO+Systems&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Jiang%2C+Jing&rft.au=Wang%2C+Jiechen&rft.au=Chu%2C+Hongyun&rft.au=Gao%2C+Qiang&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=3&rft.spage=4114&rft_id=info:doi/10.1109%2FTVT.2022.3222756&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon