A New Varying-Parameter Convergent-Differential Neural-Network for Solving Time-Varying Convex QP Problem Constrained by Linear-Equality

To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural ne...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 63; číslo 12; s. 4110 - 4125
Hlavní autori: Zhang, Zhijun, Lu, Yeyun, Zheng, Lunan, Li, Shuai, Yu, Zhuliang, Li, Yuanqing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To solve online continuous time-varying convex quadratic-programming problems constrained by a time-varying linear-equality, a novel varying-parameter convergent-differential neural network (termed as VP-CDNN) is proposed and analyzed. Different from fixed-parameter convergent-differential neural network (FP-CDNN), such as the gradient-based recurrent neural network, the classic Zhang neural network (ZNN), and the finite-time ZNN (FT-ZNN), VP-CDNN is based on monotonically increasing time-varying design-parameters. Theoretical analysis proves that VP-CDNN has super exponential convergence and the residual errors of VP-CDNN converge to zero even under perturbation situations, which are both better than traditional FP-CDNN and FT-ZNN. Computer simulations based on different activation functions are illustrated to verify the super exponential convergence performance and strong robustness characteristics of the proposed VP-CDNN. A robot tracking example is finally presented to verify the effectiveness and availability of the proposed VP-CDNN.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2018.2810039