Feature Extraction and Classification of Cataluminescence Images Based on Sparse Coding Convolutional Neural Networks

The atmosphere of human existence is increasingly complex, and various harmful gases seriously endanger human health. Therefore, it is necessary to quickly and accurately detect trace toxic gases. With the application progress of cataluminescence (CTL) in the detection of harmful gases, this article...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 11
Main Authors: Shi, Guolong, He, Yigang, Zhang, Chaolong
Format: Journal Article
Language:English
Published: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9456, 1557-9662
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The atmosphere of human existence is increasingly complex, and various harmful gases seriously endanger human health. Therefore, it is necessary to quickly and accurately detect trace toxic gases. With the application progress of cataluminescence (CTL) in the detection of harmful gases, this article proposed a feature extraction and classification algorithm for CTL images based on sparse coding convolutional neural networks (SCNN). First, the CTL images were obtained by the portable CTL sensor system, and the CTL images were encoded by simulating the characteristics of the visual cell receptive field, so that the sparse and internal features of the image were obtained, and the feature vectors were sorted. Then, the eigenvector with a large grayscale average gradient was selected to initialize the convolutional neural network convolution kernel. Finally, the complementarity of the feature differences between networks was measured according to the complementary measurement function, so as to optimize the weight of the back-propagation fine-tuning model of the loss function, and the accuracy of images classification was improved. The results showed that the SCNN algorithm can accurately realize the CTL images classification, further complete detection and identification of trace harmful gases.
AbstractList The atmosphere of human existence is increasingly complex, and various harmful gases seriously endanger human health. Therefore, it is necessary to quickly and accurately detect trace toxic gases. With the application progress of cataluminescence (CTL) in the detection of harmful gases, this article proposed a feature extraction and classification algorithm for CTL images based on sparse coding convolutional neural networks (SCNN). First, the CTL images were obtained by the portable CTL sensor system, and the CTL images were encoded by simulating the characteristics of the visual cell receptive field, so that the sparse and internal features of the image were obtained, and the feature vectors were sorted. Then, the eigenvector with a large grayscale average gradient was selected to initialize the convolutional neural network convolution kernel. Finally, the complementarity of the feature differences between networks was measured according to the complementary measurement function, so as to optimize the weight of the back-propagation fine-tuning model of the loss function, and the accuracy of images classification was improved. The results showed that the SCNN algorithm can accurately realize the CTL images classification, further complete detection and identification of trace harmful gases.
Author Shi, Guolong
He, Yigang
Zhang, Chaolong
Author_xml – sequence: 1
  givenname: Guolong
  orcidid: 0000-0001-8209-4570
  surname: Shi
  fullname: Shi, Guolong
  organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Yigang
  orcidid: 0000-0002-6642-0740
  surname: He
  fullname: He, Yigang
  email: yghe1221@whu.edu.cn
  organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Chaolong
  orcidid: 0000-0003-3892-5124
  surname: Zhang
  fullname: Zhang, Chaolong
  email: zhangchaolong@126.com
  organization: School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
BookMark eNp9kUFv1DAQRi1UJLaFOxIXSz1nGdtxHB_bqIWVChwo52jiTCqXbLy1kxb-Pd7dqgcOPX3S-HuW5_mUnUxhIsY-ClgLAfbz7ebbWoKEtQKpNNRv2EpobQpbVfKErQBEXdhSV-_YaUr3AGCq0qzYck04L5H41Z85opt9mDhOPW9GTMkP3uFhFAbe4IzjsvUTJUeTI77Z4h0lfomJep47P3cYE_Em9H66yzE9hnHZ0zjy77TEQ8xPIf5O79nbAcdEH57zjP26vrptvhY3P75smoubwkkr5mIAp5x2sse6q23XlaYj6Sz2ypQwVBaF6mtAhVIOxslOD0blSS-0cyjy6Rk7P967i-FhoTS392GJ-UGplaWBqlTa2Nyqji0XQ0qRhtb5-bB3VuLHVkC7V9xmxe1ecfusOIPwH7iLfovx72vIpyPiieilboXV-YfUP1IOisc
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TII_2022_3202979
crossref_primary_10_1016_j_snb_2023_135177
crossref_primary_10_1109_ACCESS_2024_3368881
crossref_primary_10_1109_TIM_2022_3232093
crossref_primary_10_1155_2022_6564235
crossref_primary_10_1049_2024_3179667
Cites_doi 10.1007/978-3-319-69748-2_2
10.1109/JIOT.2019.2896311
10.1080/10739149.2017.1340896
10.1039/C7AN00091J
10.1109/TIM.2017.2746378
10.1016/j.snb.2017.09.012
10.1007/s11045-019-00646-7
10.1109/TIM.2019.2925247
10.1109/TCI.2019.2896790
10.1109/TIP.2020.2965294
10.1016/j.ultras.2016.09.011
10.1016/j.bios.2018.11.031
10.1109/TCYB.2019.2933477
10.1016/j.ces.2018.02.008
10.1021/acsami.8b13747
10.1109/IMM.2019.8868275
10.1016/0021-9517(76)90129-9
10.1002/rcm.7977
10.1109/TPAMI.2020.2975796
10.1016/0925-4005(93)85121-P
10.3390/s19091960
10.1109/MIM.2018.8278808
10.1088/0957-0233/25/8/085102
10.1109/TIM.2018.2852538
10.1016/j.snb.2016.08.156
10.1109/MSP.2017.2761895
10.3390/s18010157
10.1016/j.snb.2003.09.003
10.1016/j.talanta.2018.11.016
10.3390/s19010217
10.1109/JSEN.2017.2711000
10.1016/j.bios.2017.05.041
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2020.3023508
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2020_3023508
9195001
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51977153; 51577046
  funderid: 10.13039/501100001809
– fundername: State Key Program of National Natural Science Foundation of China
  grantid: 51637004
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Plan “Important Scientific Instruments and Equipment Development”
  grantid: 2016YFF0102200
– fundername: Equipment Research Project in Advance
  grantid: 41402040301
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-f0c3c5c2da8b89bb47be2c9ad3740f69a13d80a3a22f7c2b5f733d8d15cca1a13
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671730000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:21:08 EDT 2025
Sat Nov 29 04:38:00 EST 2025
Tue Nov 18 22:17:42 EST 2025
Wed Aug 27 02:44:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f0c3c5c2da8b89bb47be2c9ad3740f69a13d80a3a22f7c2b5f733d8d15cca1a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8209-4570
0000-0003-3892-5124
0000-0002-6642-0740
PQID 2470643579
PQPubID 85462
PageCount 11
ParticipantIDs crossref_primary_10_1109_TIM_2020_3023508
proquest_journals_2470643579
ieee_primary_9195001
crossref_citationtrail_10_1109_TIM_2020_3023508
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1007/978-3-319-69748-2_2
– ident: ref2
  doi: 10.1109/JIOT.2019.2896311
– ident: ref13
  doi: 10.1080/10739149.2017.1340896
– ident: ref5
  doi: 10.1039/C7AN00091J
– ident: ref1
  doi: 10.1109/TIM.2017.2746378
– ident: ref16
  doi: 10.1016/j.snb.2017.09.012
– ident: ref32
  doi: 10.1007/s11045-019-00646-7
– ident: ref22
  doi: 10.1109/TIM.2019.2925247
– ident: ref27
  doi: 10.1109/TCI.2019.2896790
– ident: ref26
  doi: 10.1109/TIP.2020.2965294
– ident: ref28
  doi: 10.1016/j.ultras.2016.09.011
– ident: ref15
  doi: 10.1016/j.bios.2018.11.031
– ident: ref23
  doi: 10.1109/TCYB.2019.2933477
– ident: ref20
  doi: 10.1016/j.ces.2018.02.008
– ident: ref17
  doi: 10.1021/acsami.8b13747
– ident: ref4
  doi: 10.1109/IMM.2019.8868275
– ident: ref8
  doi: 10.1016/0021-9517(76)90129-9
– ident: ref19
  doi: 10.1002/rcm.7977
– ident: ref24
  doi: 10.1109/TPAMI.2020.2975796
– ident: ref9
  doi: 10.1016/0925-4005(93)85121-P
– ident: ref30
  doi: 10.3390/s19091960
– ident: ref3
  doi: 10.1109/MIM.2018.8278808
– ident: ref6
  doi: 10.1088/0957-0233/25/8/085102
– ident: ref12
  doi: 10.1109/TIM.2018.2852538
– ident: ref18
  doi: 10.1016/j.snb.2016.08.156
– ident: ref25
  doi: 10.1109/MSP.2017.2761895
– ident: ref29
  doi: 10.3390/s18010157
– ident: ref11
  doi: 10.1016/j.snb.2003.09.003
– ident: ref21
  doi: 10.1016/j.talanta.2018.11.016
– ident: ref31
  doi: 10.3390/s19010217
– ident: ref7
  doi: 10.1109/JSEN.2017.2711000
– ident: ref10
  doi: 10.1016/j.bios.2017.05.041
SSID ssj0007647
Score 2.3671427
Snippet The atmosphere of human existence is increasingly complex, and various harmful gases seriously endanger human health. Therefore, it is necessary to quickly and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Back propagation
Back propagation networks
Cataluminescence (CTL) sensor
Classification
Coding
Convolution
deep learning
Eigenvectors
Feature extraction
Gases
Image classification
Internet of Things
Kernel
Luminescence
Neural networks
Sensor arrays
sparse coding convolutional neural networks (SCNNs)
Temperature sensors
Visual fields
Title Feature Extraction and Classification of Cataluminescence Images Based on Sparse Coding Convolutional Neural Networks
URI https://ieeexplore.ieee.org/document/9195001
https://www.proquest.com/docview/2470643579
Volume 70
WOSCitedRecordID wos000671730000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgW1xdJQcvgnXb9JHmqMuKHhRBBW8lzQME7cp2K_58Z9LuIiiC9JDSJjTwTTMzycx8ACeZRh0V6yTIY4UOikU_RTohA6dQQnQpcqmUJ5sQd3f587O8X4CzeS6MtdYHn9lzuvVn-WasG9oqG0jiLKVkrUUhsjZXa77qiixp62NG-DW0CmZHkqEcPN7coiPI0T-l4i5EJPlNBXlOlR8LsdcuVxv_m9cmrHdWJLtoYd-CBVttw9q32oLbsOJjO3W9Aw2Zec3EstHndNLmMTBVGeb5MClSyIPDxo4NaS-neaNIeE1_PLt5w-WmZpeo6gzDPg_v6AdbNhyTxsOm-ugkFydDZT584-PK6114uho9Dq-Djm0h0FxG08CFOtap5kblZS7LMhGl5VoqE4skdJlUUWzyUMWKcyc0L1MnYnxiohSFIMK3e7BUjSu7DyxyucbLOqeihBsh0xJHZDozoSxVbnowmAFQ6K4UOTFivBbeJQllgZAVBFnRQdaD0_mI97YMxx99dwiieb8OnR70ZxgX3X9aFzwRZJOlQh78PuoQVjlFsfhNlz4sTSeNPYJl_TF9qSfHXgS_ABXG2vA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_EKtoH60eLp1fdB18KjZdsPjb7aI8TD_UQvIJvYbMfUOjl5HIR_3xnNrlDaCmUPGxIdsnCb7IzszszP4CLTKOOinUS5LFCB8WinyKdkIFTKCG6FLlUypNNiMkkf3qSDxvwfZ0LY631wWf2km79Wb6Z64a2ygaSOEspWetDmiQ8bLO11uuuyJK2QmaE30O7YHUoGcrBdHyPriBHD5XKuxCV5Dsl5FlV_liKvX65_vR_M9uHvc6OZFct8AewYatD-PiuuuAhbPvoTl0fQUOGXrOwbPS6XLSZDExVhnlGTIoV8vCwuWND2s1pZhQLr-mfZ-MZLjg1-4HKzjDs8_iMnrBlwznpPGyql052cTJU6MM3PrK8_gw_r0fT4U3Q8S0EmstoGbhQxzrV3Ki8zGVZJqK0XEtlYpGELpMqik0eqlhx7oTmZepEjE9MlKIYRPj2C2xW88oeA4tcrvGyzqko4UbItMQRmc5MKEuVmx4MVgAUuitGTpwYvwvvlISyQMgKgqzoIOvBt_WI57YQxz_6HhFE634dOj3orzAuuj-1LngiyCpLhTz5-6hz2LmZ3t8Vd-PJ7Snscopp8VswfdhcLhr7Fbb0y_JXvTjz4vgGnXzeNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extraction+and+Classification+of+Cataluminescence+Images+Based+on+Sparse+Coding+Convolutional+Neural+Networks&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Shi%2C+Guolong&rft.au=He%2C+Yigang&rft.au=Zhang%2C+Chaolong&rft.date=2021&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=70&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2020.3023508&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2020_3023508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon