Degradation-Aware Remaining Useful Life Prediction With LSTM Autoencoder

The remaining useful life (RUL) prediction plays a pivotal role in the predictive maintenance of industrial manufacturing systems. However, one major problem with the existing RUL estimation algorithms is the assumption of a single health degradation trend for different machine health stages. To imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 70; S. 1 - 10
Hauptverfasser: Wu, Ji-Yan, Wu, Min, Chen, Zhenghua, Li, Xiao-Li, Yan, Ruqiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The remaining useful life (RUL) prediction plays a pivotal role in the predictive maintenance of industrial manufacturing systems. However, one major problem with the existing RUL estimation algorithms is the assumption of a single health degradation trend for different machine health stages. To improve the RUL prediction accuracy with various degradation trends, this article proposes an algorithm dubbed degradation-aware long short-term memory (LSTM) autoencoder (AE) (DELTA). First, the Hilbert transform is adopted to evaluate the degradation stage and factor with the real-time sensory signal. Second, we adopt LSTM AE to predict RUL based on multisensor time-series data and the degradation factor. Distinct from the existing studies, the proposed framework is able to dynamically model the degradation factor and explore latent variables to improve RUL prediction accuracy. The performance of DELTA is evaluated with the open-source FEMTO bearing data set. Compared with the existing algorithms, DELTA achieves appreciable improvements in the RUL prediction accuracy.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2021.3055788