Infinite Families of Cyclic and Negacyclic Codes Supporting 3-Designs
Interplay between coding theory and combinatorial <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-designs has been a hot topic for many years for combinatorialists and coding theorists. Some infinite families of cyclic codes supporting inf...
Uložené v:
| Vydané v: | IEEE transactions on information theory Ročník 69; číslo 4; s. 2341 - 2354 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Interplay between coding theory and combinatorial <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula>-designs has been a hot topic for many years for combinatorialists and coding theorists. Some infinite families of cyclic codes supporting infinite families of 3-designs have been constructed in the past 50 years. However, no infinite family of negacyclic codes supporting an infinite family of 3-designs has been reported in the literature. This is the main motivation of this paper. Let <inline-formula> <tex-math notation="LaTeX">q=p^{m} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is an odd prime and <inline-formula> <tex-math notation="LaTeX">m \geq 2 </tex-math></inline-formula> is an integer. The objective of this paper is to present an infinite family of cyclic codes over <inline-formula> <tex-math notation="LaTeX">{\mathrm {GF}}(q) </tex-math></inline-formula> supporting an infinite family of 3-designs and two infinite families of negacyclic codes over <inline-formula> <tex-math notation="LaTeX">{\mathrm {GF}}(q^{2}) </tex-math></inline-formula> supporting two infinite families of 3-designs. The parameters and the weight distributions of these codes are determined. The subfield subcodes of these negacyclic codes over <inline-formula> <tex-math notation="LaTeX">{\mathrm {GF}}(q) </tex-math></inline-formula> are studied. Three infinite families of almost MDS codes are also presented. A constacyclic code over <inline-formula> <tex-math notation="LaTeX">{\mathrm {GF}}(4) </tex-math></inline-formula> supporting a 4-design and seven open problems are also presented in this paper. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2022.3222474 |