Mixed-integer programming formulation of a data-driven solver in computational elasticity

This paper presents a mixed-integer quadratic programming formulation of an existing data-driven approach to computational elasticity. This formulation is suitable for application of a standard mixed-integer programming solver, which finds a global optimal solution. Therefore, the results obtained b...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization letters Ročník 13; číslo 7; s. 1505 - 1514
Hlavný autor: Kanno, Yoshihiro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2019
Predmet:
ISSN:1862-4472, 1862-4480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a mixed-integer quadratic programming formulation of an existing data-driven approach to computational elasticity. This formulation is suitable for application of a standard mixed-integer programming solver, which finds a global optimal solution. Therefore, the results obtained by the presented method can be used as benchmark instances for any other algorithm. Preliminary numerical experiments are performed to compare quality of solutions obtained by the proposed method and a heuristic conventionally used in the data-driven computational mechanics.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-019-01409-w