Mixed-integer programming formulation of a data-driven solver in computational elasticity

This paper presents a mixed-integer quadratic programming formulation of an existing data-driven approach to computational elasticity. This formulation is suitable for application of a standard mixed-integer programming solver, which finds a global optimal solution. Therefore, the results obtained b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 13; číslo 7; s. 1505 - 1514
Hlavní autor: Kanno, Yoshihiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2019
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a mixed-integer quadratic programming formulation of an existing data-driven approach to computational elasticity. This formulation is suitable for application of a standard mixed-integer programming solver, which finds a global optimal solution. Therefore, the results obtained by the presented method can be used as benchmark instances for any other algorithm. Preliminary numerical experiments are performed to compare quality of solutions obtained by the proposed method and a heuristic conventionally used in the data-driven computational mechanics.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-019-01409-w