Fast and Simple Bregman Projection Methods for Solving Variational Inequalities and Related Problems in Banach Spaces

In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the prob...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Resultate der Mathematik Ročník 75; číslo 4
Hlavní autori: Gibali, Aviv, Jolaoso, Lateef Olakunle, Mewomo, Oluwatosin Temitope, Taiwo, Adeolu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2020
Predmet:
ISSN:1422-6383, 1420-9012
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the problem are presented and their strong convergence theorems are established. The usage of the Bregman distances and the Armijo line search technique (which avoids the need to know a priori the Lipschitz constant of the involved operators), enable great flexibility of the proposed scheme, and besides their theoretical extensions, it might also have a practical potential.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-020-01306-0