Strong Karush–Kuhn–Tucker optimality conditions for weak efficiency in constrained multiobjective programming problems in terms of mordukhovich subdifferentials
Based on the notation of Mordukhovich subdifferentials (Mordukhovich in Variational analysis and generalized differentiation I: basic theory, Springer, Berlin, 2006; Variational analysis and generalized differentiation II: applications, Springer, Berlin, 2006; Variational analysis and applications,...
Uložené v:
| Vydané v: | Optimization letters Ročník 15; číslo 4; s. 1175 - 1194 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
|
| Predmet: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Based on the notation of Mordukhovich subdifferentials (Mordukhovich in Variational analysis and generalized differentiation I: basic theory, Springer, Berlin, 2006; Variational analysis and generalized differentiation II: applications, Springer, Berlin, 2006; Variational analysis and applications, Springer, Berlin, 2018), we establish strong Karush–Kuhn–Tucker type necessary optimality conditions for the weak efficiency of a nonsmooth nonconvex multiobjective programming problem with set, inequality and equality constraints. We also provide several new definitions for the Mordukhovich-pseudoconvexity and Mordukhovich-quasiconvexity with extended-real-valued functions, and then provide sufficient optimality conditions for weak efficiency to such problem in terms of Mordukhovich subdifferentials. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-020-01620-0 |