Strong Karush–Kuhn–Tucker optimality conditions for weak efficiency in constrained multiobjective programming problems in terms of mordukhovich subdifferentials
Based on the notation of Mordukhovich subdifferentials (Mordukhovich in Variational analysis and generalized differentiation I: basic theory, Springer, Berlin, 2006; Variational analysis and generalized differentiation II: applications, Springer, Berlin, 2006; Variational analysis and applications,...
Uloženo v:
| Vydáno v: | Optimization letters Ročník 15; číslo 4; s. 1175 - 1194 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
|
| Témata: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Based on the notation of Mordukhovich subdifferentials (Mordukhovich in Variational analysis and generalized differentiation I: basic theory, Springer, Berlin, 2006; Variational analysis and generalized differentiation II: applications, Springer, Berlin, 2006; Variational analysis and applications, Springer, Berlin, 2018), we establish strong Karush–Kuhn–Tucker type necessary optimality conditions for the weak efficiency of a nonsmooth nonconvex multiobjective programming problem with set, inequality and equality constraints. We also provide several new definitions for the Mordukhovich-pseudoconvexity and Mordukhovich-quasiconvexity with extended-real-valued functions, and then provide sufficient optimality conditions for weak efficiency to such problem in terms of Mordukhovich subdifferentials. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-020-01620-0 |