A Convex Approach to Data-Driven Optimal Control via Perron-Frobenius and Koopman Operators

This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 67; číslo 9; s. 4778 - 4785
Hlavní autori: Huang, Bowen, Vaidya, Umesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We provide a convex formulation for the optimal control problem (OCP) of the nonlinear system. The convex formulation relies on the duality result in the dynamical system's stability theory involving density function and Perron-Frobenius operator. We formulate the OCP as an infinite-dimensional convex optimization program. The finite-dimensional approximation of the optimization problem relies on the recent advances made in the Koopman operator's data-driven computation, which is dual to the Perron-Frobenius operator. Simulation results are presented to demonstrate the application of the developed framework.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3164986