A Convex Approach to Data-Driven Optimal Control via Perron-Frobenius and Koopman Operators
This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We...
Uložené v:
| Vydané v: | IEEE transactions on automatic control Ročník 67; číslo 9; s. 4778 - 4785 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We provide a convex formulation for the optimal control problem (OCP) of the nonlinear system. The convex formulation relies on the duality result in the dynamical system's stability theory involving density function and Perron-Frobenius operator. We formulate the OCP as an infinite-dimensional convex optimization program. The finite-dimensional approximation of the optimization problem relies on the recent advances made in the Koopman operator's data-driven computation, which is dual to the Perron-Frobenius operator. Simulation results are presented to demonstrate the application of the developed framework. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2022.3164986 |