Ion-Induced Energy Pulse Mechanism for Single-Event Burnout in High-Voltage SiC Power MOSFETs and Junction Barrier Schottky Diodes
Heavy-ion data suggest that a common mechanism is responsible for single-event burnout (SEB) in 1200-V power MOSFETs and junction barrier Schottky (JBS) diodes. Similarly, heavy-ion data suggest a common mechanism is also responsible for leakage current degradation in both devices. This mechanism, b...
Saved in:
| Published in: | IEEE transactions on nuclear science Vol. 67; no. 1; pp. 22 - 28 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9499, 1558-1578 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Heavy-ion data suggest that a common mechanism is responsible for single-event burnout (SEB) in 1200-V power MOSFETs and junction barrier Schottky (JBS) diodes. Similarly, heavy-ion data suggest a common mechanism is also responsible for leakage current degradation in both devices. This mechanism, based on ion-induced, highly localized energy pulses, is demonstrated in simulations and shown to be capable of causing degradation and SEB for both the MOSFETs and JBS diodes. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9499 1558-1578 |
| DOI: | 10.1109/TNS.2019.2955922 |