Learning Robotic Manipulation of Natural Materials With Variable Properties for Construction Tasks

The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic construction has largely been implemented on standardized materials, conducting simple, predictable, and repetitive tasks. We present a novel mobile ro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 7; číslo 2; s. 5749 - 5756
Hlavní autoři: Kalousdian, Nicolas Kubail, Lochnicki, Grzegorz, Hartmann, Valentin N., Leder, Samuel, Oguz, Ozgur S., Menges, Achim, Toussaint, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic construction has largely been implemented on standardized materials, conducting simple, predictable, and repetitive tasks. We present a novel mobile robotic system and corresponding learning approach that takes a step towards assembly of natural materials with anisotropic mechanical properties for more sustainable architectural construction. Through experiments both in simulation and in the real world, we demonstrate a dynamically adjusted curriculum and randomization approach for the problem of learning manipulation tasks involving materials with biological variability, namely bamboo. Using our approach, robots are able to transport bamboo bundles and reach to goal-positions during the assembly of bamboo structures.
AbstractList The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic construction has largely been implemented on standardized materials, conducting simple, predictable, and repetitive tasks. We present a novel mobile robotic system and corresponding learning approach that takes a step towards assembly of natural materials with anisotropic mechanical properties for more sustainable architectural construction. Through experiments both in simulation and in the real world, we demonstrate a dynamically adjusted curriculum and randomization approach for the problem of learning manipulation tasks involving materials with biological variability, namely bamboo. Using our approach, robots are able to transport bamboo bundles and reach to goal-positions during the assembly of bamboo structures.
Author Menges, Achim
Hartmann, Valentin N.
Oguz, Ozgur S.
Leder, Samuel
Kalousdian, Nicolas Kubail
Toussaint, Marc
Lochnicki, Grzegorz
Author_xml – sequence: 1
  givenname: Nicolas Kubail
  orcidid: 0000-0002-3613-1016
  surname: Kalousdian
  fullname: Kalousdian, Nicolas Kubail
  email: nicolas.kubail@icd.uni-stuttgart.de
  organization: Institute for Computational Design and Construction, University of Stuttgart, Stuttgart, Germany
– sequence: 2
  givenname: Grzegorz
  orcidid: 0000-0002-2769-1337
  surname: Lochnicki
  fullname: Lochnicki, Grzegorz
  email: grzegorz.lochnicki1@gmail.com
  organization: University of Stuttgart, Stuttgart, Germany
– sequence: 3
  givenname: Valentin N.
  orcidid: 0000-0002-9661-2751
  surname: Hartmann
  fullname: Hartmann, Valentin N.
  email: valentin.hartmann@ipvs.uni-stuttgart.de
  organization: Machine Learning and Robotics Lab, University of Stuttgart, Stuttgart, Germany
– sequence: 4
  givenname: Samuel
  orcidid: 0000-0003-3533-3633
  surname: Leder
  fullname: Leder, Samuel
  email: samuel.leder@icd.uni-stuttgart.de
  organization: Institute for Computational Design and Construction, University of Stuttgart, Stuttgart, Germany
– sequence: 5
  givenname: Ozgur S.
  orcidid: 0000-0001-8723-1837
  surname: Oguz
  fullname: Oguz, Ozgur S.
  email: ozgur@cs.bilkent.edu.tr
  organization: Machine Learning and Robotics Lab, University of Stuttgart, Stuttgart, Germany
– sequence: 6
  givenname: Achim
  orcidid: 0000-0001-9055-4039
  surname: Menges
  fullname: Menges, Achim
  email: achim.menges@icd.uni-stuttgart.de
  organization: Institute for Computational Design and Construction, University of Stuttgart, Stuttgart, Germany
– sequence: 7
  givenname: Marc
  orcidid: 0000-0002-5487-6767
  surname: Toussaint
  fullname: Toussaint, Marc
  email: toussaint@tu-berlin.de
  organization: Learning and Intelligent Systems Group, TU Berlin, Berlin, Germany
BookMark eNp9kctLxDAQxoOs4LruXfAS8Nw1jzZtjsviC-qDZdVjSdJUs9amJunB_97sAxEP5jKZ4fvNMN8cg1FnOw3AKUYzjBG_KJfzGUGEzCjOOCmKAzAmNM8TmjM2-vU_AlPv1wghnJGc8mwMZKmF60z3CpdW2mAUvBOd6YdWBGM7aBt4L8LgRBvrQTsjWg9fTHiDzyImstXw0dleu2C0h411cGE7H9ygtvhK-Hd_Ag6biOnpPk7A09XlanGTlA_Xt4t5mSjCcUjqOpVISk1rRmTKVJql8QmOGsUkUgUTGAvBKGZCU5qnacaatM5o0VBOpJJ0As53fXtnPwftQ7W2g-viyIqwNOMFzTmOKrZTKWe9d7qplAnbZYMTpq0wqjaWVtHSamNptbc0gugP2DvzIdzXf8jZDjFa6x85z2kWj0G_AVfwg_A
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_autcon_2025_105993
crossref_primary_10_1177_09544062251348298
crossref_primary_10_1016_j_bamboo_2025_100145
crossref_primary_10_1002_bate_202200070
crossref_primary_10_1146_annurev_control_080122_090049
crossref_primary_10_1049_cth2_12707
crossref_primary_10_1002_bate_202300070
crossref_primary_10_1016_j_autcon_2025_106370
crossref_primary_10_1016_j_rser_2024_115230
crossref_primary_10_1007_s41693_025_00157_x
crossref_primary_10_1016_j_autcon_2024_105333
Cites_doi 10.1007/s10514-006-9008-5
10.1016/j.autcon.2021.103720
10.15607/RSS.2020.XVI.031
10.1109/ICRA.2018.8460915
10.1016/j.autcon.2020.103400
10.1016/j.aei.2019.100993
10.1145/3414685.3417868
10.1109/LRA.2020.3010462
10.1007/978-3-319-92294-2_5
10.1007/s41693-017-0006-2
10.1109/IROS45743.2020.9341502
10.1016/j.jobe.2019.100868
10.1109/IROS.2018.8594027
10.1109/ICRA.2019.8794333
10.1109/MCS.2014.2320359
10.1145/3272127.3275048
10.1002/bate.202000106
10.1126/scirobotics.aau8479
10.1109/ICRA.2018.8460528
10.1109/ICRA.2018.8461044
10.15607/RSS.2011.VII.035
10.1109/ICRA.2017.7989272
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3159288
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 5756
ExternalDocumentID 10_1109_LRA_2022_3159288
9735376
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
– fundername: Germany's Excellence Strategy - EXC
  grantid: 2120/1-390831618
– fundername: Cyber Valley Research Fund
  grantid: CyVy-RF-2021-18
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-dd4b0bbe3d62b46c454444a90fc6b0c86a11aa6316ae3374456f4d538f392bcb3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777325400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 04:24:07 EDT 2025
Sat Nov 29 06:03:16 EST 2025
Tue Nov 18 22:23:53 EST 2025
Wed Aug 27 02:36:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-dd4b0bbe3d62b46c454444a90fc6b0c86a11aa6316ae3374456f4d538f392bcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9055-4039
0000-0001-8723-1837
0000-0002-5487-6767
0000-0002-2769-1337
0000-0003-3533-3633
0000-0002-3613-1016
0000-0002-9661-2751
PQID 2645983791
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2022_3159288
crossref_primary_10_1109_LRA_2022_3159288
proquest_journals_2645983791
ieee_primary_9735376
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref31
ref30
ref33
ref11
ref32
ref10
ref2
clavera (ref9) 0
ref19
(ref16) 0
ref18
schenck (ref34) 0
(ref12) 2021
adel (ref25) 0
mnih (ref39) 0
knippers (ref1) 2020
zwierzycki (ref36) 2018
ref24
johns (ref23) 2014
ref26
ref20
ref22
leder (ref21) 0
(ref15) 0
ref28
ref27
(ref17) 0
menges (ref3) 0
ref29
ref8
ref7
sutton (ref38) 2018
lugt (ref14) 2017
ref6
ref5
devadass (ref4) 0
schulman (ref37) 2017
References_xml – start-page: 239
  year: 0
  ident: ref34
  article-title: Learning robotic manipulation of granular media
  publication-title: Proc Conf Robot Learn
– year: 0
  ident: ref15
  article-title: Hadrian x-Outdoor construction & bricklaying robot from FBR
– ident: ref26
  doi: 10.1007/s10514-006-9008-5
– ident: ref19
  doi: 10.1016/j.autcon.2021.103720
– ident: ref8
  doi: 10.15607/RSS.2020.XVI.031
– ident: ref32
  doi: 10.1109/ICRA.2018.8460915
– start-page: 78
  year: 0
  ident: ref3
  article-title: Integrative design computation: Integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions
  publication-title: Proc Conf Assoc Comput Aided Des Architecture
– year: 2017
  ident: ref37
  article-title: Proximal policy optimization algorithms
  publication-title: arXiv 1707 06347
– ident: ref27
  doi: 10.1016/j.autcon.2020.103400
– ident: ref18
  doi: 10.1016/j.aei.2019.100993
– year: 0
  ident: ref9
  article-title: Learning to adapt in dynamic, real-world environments through meta-reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– start-page: 394
  year: 0
  ident: ref25
  article-title: Design of robotically fabricated timber frame structures
  publication-title: Proc 38th Annu Conf Assoc Comput Aided Des Architecture
– ident: ref33
  doi: 10.1145/3414685.3417868
– ident: ref29
  doi: 10.1109/LRA.2020.3010462
– year: 2018
  ident: ref38
  publication-title: Reinforcement Learning An Introduction
– ident: ref6
  doi: 10.1007/978-3-319-92294-2_5
– ident: ref28
  doi: 10.1007/s41693-017-0006-2
– ident: ref7
  doi: 10.1109/IROS45743.2020.9341502
– ident: ref11
  doi: 10.1016/j.jobe.2019.100868
– start-page: 1928
  year: 0
  ident: ref39
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc 33rd Int Conf Mach Learn
– ident: ref30
  doi: 10.1109/IROS.2018.8594027
– ident: ref35
  doi: 10.1109/ICRA.2019.8794333
– start-page: 206
  year: 0
  ident: ref4
  article-title: Robotic fabrication of non-standard material
  publication-title: Proc Conf Assoc Comput Aided Des Architecture
– ident: ref20
  doi: 10.1109/MCS.2014.2320359
– year: 2021
  ident: ref12
  article-title: Covariant-Solutions
– year: 0
  ident: ref16
  article-title: Technology-Icon
– year: 0
  ident: ref17
  article-title: Built robotics
– ident: ref31
  doi: 10.1145/3272127.3275048
– year: 0
  ident: ref21
  article-title: Co-design in architecture: A modular material-robot kinematic construction system
  publication-title: Proc IROS Workshop Construction Architecture Robot
– ident: ref2
  doi: 10.1002/bate.202000106
– year: 2017
  ident: ref14
  publication-title: Booming Bamboo The (Re)discovery of a Sustainable Material With Endless Possibilities
– ident: ref24
  doi: 10.1126/scirobotics.aau8479
– ident: ref10
  doi: 10.1109/ICRA.2018.8460528
– ident: ref13
  doi: 10.1109/ICRA.2018.8461044
– ident: ref5
  doi: 10.15607/RSS.2011.VII.035
– start-page: 216
  year: 2014
  ident: ref23
  article-title: Augmented materiality: Modelling with material indeterminacy
  publication-title: Fabr 2014 Negotiating Des & Making
– start-page: 373
  year: 2018
  ident: ref36
  publication-title: Localised and Learnt Applications of Machine Learning for Robotic Incremental Sheet Forming
– year: 2020
  ident: ref1
  article-title: The next normal in construction: How disruption is reshaping the world's largest ecosystem
– ident: ref22
  doi: 10.1109/ICRA.2017.7989272
SSID ssj0001527395
Score 2.2508
Snippet The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5749
SubjectTerms AI-enabled robotics
Assembly
Automation
Bamboo
Bending
Curricula
Hardware
hardware-software integration in robotics
Machine learning
Manufacturing engineering
Mechanical properties
Mobile robots
Robotics
robotics and automation in construction
Robots
Task analysis
Transportation
Title Learning Robotic Manipulation of Natural Materials With Variable Properties for Construction Tasks
URI https://ieeexplore.ieee.org/document/9735376
https://www.proquest.com/docview/2645983791
Volume 7
WOSCitedRecordID wos000777325400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s8aAH32K1lj14EYxNsptN91hE8WBLEV-3sK9oURppq0d_u7ObpAqKYE557IYw32R3Zh_fB3CUWOzGTI8HKlVJwAyVgRAmCnLDTWppihe5F5tIh8Pew4MYLcHJYi-MtdYvPrOn7tTP5ZtCv7mhsq5IqWMfaUAjTXm5V-trPMUxiYmknokMRffquo_5XxxjWpqI2EurfPU8XkrlR_vrO5WL9f99zgasVcEj6Zdob8KSnWzB6jdKwW1QFWHqI7kuVIHlyEBOxrVIFylyMpSeagPvz0vvI_fj-RO5w6TZbaMiIzc8P3U8qwQDWuIUPWuOWXIjZ8-zHbi9OL85uwwqHYVAxyKaB8YwFSplqeGxYlyzhOEhRZhrrkLd4zKKpOQ04tJSmjKMqXJmsCXMMXhSWtFdaE6Kid0DorS0xuSRZIlhET43krIe-gEax3BNW9CtbZzpimTcaV28ZD7ZCEWGqGQOlaxCpQXHixqvJcHGH2W3HQqLchUALWjXMGbVHzjLYseSg9m3iPZ_r3UAK-7d5SqcNjTRlPYQlvX7fDybdqAx-DjveBf7BHET0eg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBFsK5t0nR5HKJMnENkXt5KbtWhrOKmv9-TtJ2CIvjWS0LD-dLknJPk-wAOE4vTmGnxQKUqCZihMhDCREFuuEktTfEm92ITaa_XengQ11NwPDkLY631m8_sibv0a_mm0O8uVdYUKXXsI9MwmzAWh-Vpra-MiuMSE0m9FhmKZvemjRFgHGNgmojYi6t8zT1eTOXHCOynlfPl_zVoBZYq95G0S7xXYcoO12DxG6ngOqiKMvWR3BSqwHLkSg4HtUwXKXLSk55sA5-Py_5H7gfjJ3KHYbM7SEWuXYL-zTGtEnRpidP0rFlmSV-OnkcbcHt-1j_tBJWSQqBjEY0DY5gKlbLU8FgxrhnajzEpwlxzFeoWl1EkJacRl5bSlKFXlTODY2GO7pPSim7CzLAY2i0gSktrTB5JlhgW4XsjKWthT0DjGK5pA5q1jTNd0Yw7tYuXzIcbocgQlcyhklWoNOBoUuO1pNj4o-y6Q2FSrgKgAbs1jFn1D46y2PHkYPwtou3fax3AfKd_1c26F73LHVhw3yn35OzCDJrV7sGc_hgPRm_7vqN9AoiG0_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Robotic+Manipulation+of+Natural+Materials+With+Variable+Properties+for+Construction+Tasks&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Kalousdian%2C+Nicolas+Kubail&rft.au=Lochnicki%2C+Grzegorz&rft.au=Hartmann%2C+Valentin+N.&rft.au=Leder%2C+Samuel&rft.date=2022-04-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=7&rft.issue=2&rft.spage=5749&rft.epage=5756&rft_id=info:doi/10.1109%2FLRA.2022.3159288&rft.externalDocID=9735376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon