Learning Robotic Manipulation of Natural Materials With Variable Properties for Construction Tasks
The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic construction has largely been implemented on standardized materials, conducting simple, predictable, and repetitive tasks. We present a novel mobile ro...
Uloženo v:
| Vydáno v: | IEEE robotics and automation letters Ročník 7; číslo 2; s. 5749 - 5756 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic construction has largely been implemented on standardized materials, conducting simple, predictable, and repetitive tasks. We present a novel mobile robotic system and corresponding learning approach that takes a step towards assembly of natural materials with anisotropic mechanical properties for more sustainable architectural construction. Through experiments both in simulation and in the real world, we demonstrate a dynamically adjusted curriculum and randomization approach for the problem of learning manipulation tasks involving materials with biological variability, namely bamboo. Using our approach, robots are able to transport bamboo bundles and reach to goal-positions during the assembly of bamboo structures. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2377-3766 2377-3766 |
| DOI: | 10.1109/LRA.2022.3159288 |