Data-Reuse Recursive Least-Squares Algorithms
There are different strategies to improve the overall performance of the recursive least-squares (RLS) adaptive filter. In this letter, we focus on the data-reuse approach, aiming to improve the convergence rate/tracking of the algorithm by reusing the same set of data (i.e., the input and reference...
Gespeichert in:
| Veröffentlicht in: | IEEE signal processing letters Jg. 29; S. 752 - 756 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1070-9908, 1558-2361 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | There are different strategies to improve the overall performance of the recursive least-squares (RLS) adaptive filter. In this letter, we focus on the data-reuse approach, aiming to improve the convergence rate/tracking of the algorithm by reusing the same set of data (i.e., the input and reference signals) several times. First, we present a computationally efficient data-reuse RLS algorithm, which is the result of a low complexity implementation of the data-reuse process. Moreover, we extend the idea to the fast RLS algorithm. Simulations performed in the context of echo cancellation support the performance gain. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1070-9908 1558-2361 |
| DOI: | 10.1109/LSP.2022.3153207 |