Data-Reuse Recursive Least-Squares Algorithms

There are different strategies to improve the overall performance of the recursive least-squares (RLS) adaptive filter. In this letter, we focus on the data-reuse approach, aiming to improve the convergence rate/tracking of the algorithm by reusing the same set of data (i.e., the input and reference...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 29; s. 752 - 756
Hlavní autoři: Paleologu, Constantin, Benesty, Jacob, Ciochina, Silviu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:There are different strategies to improve the overall performance of the recursive least-squares (RLS) adaptive filter. In this letter, we focus on the data-reuse approach, aiming to improve the convergence rate/tracking of the algorithm by reusing the same set of data (i.e., the input and reference signals) several times. First, we present a computationally efficient data-reuse RLS algorithm, which is the result of a low complexity implementation of the data-reuse process. Moreover, we extend the idea to the fast RLS algorithm. Simulations performed in the context of echo cancellation support the performance gain.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2022.3153207