Large-amplitude vibration and buckling analysis of foam beams on nonlinear elastic foundations

The aim of this study is to investigate the effects of nonlinear geometry and a nonlinear Pasternak medium on the free vibration and the mechanical buckling of viscoelastic open-cell foam beams using a semianalytical method. The kinematic relation is considered by the Euler–Bernoulli hypothesis and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanics of time-dependent materials Ročník 28; číslo 2; s. 363 - 380
Hlavní autoři: Zamani, H. A., Nourazar, S. S., Aghdam, M. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.06.2024
Témata:
ISSN:1385-2000, 1573-2738
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this study is to investigate the effects of nonlinear geometry and a nonlinear Pasternak medium on the free vibration and the mechanical buckling of viscoelastic open-cell foam beams using a semianalytical method. The kinematic relation is considered by the Euler–Bernoulli hypothesis and von Karman strains, while constitutive relations are defined via the separable-kernel framework and Boltzmann–Volterra superposition principles. A nonlinear nonsymmetric porosity distribution through the thickness direction is simulated using a power-law relationship. The Galerkin method, variational method, and a numerical iterative algorithm are applied to solve two coupled partial differential equations with frequency-dependent coefficients. To verify our results, nonlinear frequencies and buckling loads of elastic beams, frequencies, and loss factors of viscoelastic beams are compared with available results and close correlation is observed. The influences of axial force, boundary condition, elastic medium, and a frequency-dependent constitutive relation on vibrational characteristics are scrutinized through parametric studies.
ISSN:1385-2000
1573-2738
DOI:10.1007/s11043-022-09568-7