Interval Distribution Power Flow With Relative-Distance-Measure Arithmetic

Interval distribution power flow can analyze the uncertainties incurred by the random fluctuations of distributed renewable generation and load demand in distribution networks. The conventional interval arithmetic (IA) and affine arithmetic (AA) cannot fully apply the characteristics of general alge...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on smart grid Ročník 12; číslo 5; s. 3858 - 3867
Hlavní autori: Ngo, Vietcuong, Wu, Wenchuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1949-3053, 1949-3061
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Interval distribution power flow can analyze the uncertainties incurred by the random fluctuations of distributed renewable generation and load demand in distribution networks. The conventional interval arithmetic (IA) and affine arithmetic (AA) cannot fully apply the characteristics of general algebra: associativity, inverse elements, distributive law, so the IA or AA based interval power flows (IPFs) are either very conservative or unreliable. Relative-Distance-Measure (RDM) arithmetic can overcome these defects in the conventional arithmetic for interval analysis and therefore a RDM based IPF is proposed in this paper. Furthermore, a linear programming contractor (LPC) is developed to solve this RDM based IPF, which can iteratively transform the IPF problem into serial linear optimization models and its results are reliable. Simulation results of IEEE 123-bus test systems show that the proposed IPF can obtain much better results than those of baseline methods in terms of accuracy and reliability.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2021.3074018