State Distribution of Markovian Jump Boolean Networks and Its Applications

This article investigates the state distribution of Markovian jump Boolean networks subject to stochastic disturbances based on the measured outputs. The considered disturbances are modeled as independent and identically distributed processes with known probability distributions. An iterative algori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 68; číslo 3; s. 1815 - 1822
Hlavní autoři: Meng, Min, Xiao, Gaoxi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article investigates the state distribution of Markovian jump Boolean networks subject to stochastic disturbances based on the measured outputs. The considered disturbances are modeled as independent and identically distributed processes with known probability distributions. An iterative algorithm is proposed to compute conditional probability distributions of the current state and one-step predicted state based on the knowledge of the output measurements. The obtained conditional probability distributions can be applied to study the optimal state estimation, reconstructibility, and fault detection of Markovian jump Boolean networks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3157078