State Distribution of Markovian Jump Boolean Networks and Its Applications

This article investigates the state distribution of Markovian jump Boolean networks subject to stochastic disturbances based on the measured outputs. The considered disturbances are modeled as independent and identically distributed processes with known probability distributions. An iterative algori...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 68; číslo 3; s. 1815 - 1822
Hlavní autori: Meng, Min, Xiao, Gaoxi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article investigates the state distribution of Markovian jump Boolean networks subject to stochastic disturbances based on the measured outputs. The considered disturbances are modeled as independent and identically distributed processes with known probability distributions. An iterative algorithm is proposed to compute conditional probability distributions of the current state and one-step predicted state based on the knowledge of the output measurements. The obtained conditional probability distributions can be applied to study the optimal state estimation, reconstructibility, and fault detection of Markovian jump Boolean networks.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3157078