A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions
The data-driven methods in machinery fault diagnosis have become increasingly popular in the past two decades. However, the wide applications of this scheme are generally compromised in real-world conditions because of the discrepancy between the training data and testing data. Although the recently...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 70; s. 1 - 11 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!