Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects

In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processes. Promptly recognizing wafer map defects is an effective way to increase manufactu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on semiconductor manufacturing Ročník 32; číslo 4; s. 613 - 624
Hlavní autor: Yu, Jianbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0894-6507, 1558-2345
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processes. Promptly recognizing wafer map defects is an effective way to increase manufacturing process stability and then to improve yields. Deep learning has been widely applied and obtained many successes in image and visual analysis. This paper proposes an effective deep learning method, enhanced stacked denoising autoencoder (ESDAE) with manifold regularization for wafer map pattern recognition (WMPR) in manufacturing processes. This study will concentrate on developing a deep learning model to learn effective discriminative features from wafer maps through a deep network architecture for WMPR improvement. An indication based on ESDAE is developed for detecting map defects online. An ESDAE-based classifier is finally developed to implement recognition of wafer map defects. The most motivation for developing deep learning and manifold regularization techniques is to achieve higher accuracy and applicability than that of some regular recognizers. The effectiveness of the proposed method has been demonstrated by experimental results from a real-world wafer map dataset (WM-811K).
AbstractList In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processes. Promptly recognizing wafer map defects is an effective way to increase manufacturing process stability and then to improve yields. Deep learning has been widely applied and obtained many successes in image and visual analysis. This paper proposes an effective deep learning method, enhanced stacked denoising autoencoder (ESDAE) with manifold regularization for wafer map pattern recognition (WMPR) in manufacturing processes. This study will concentrate on developing a deep learning model to learn effective discriminative features from wafer maps through a deep network architecture for WMPR improvement. An indication based on ESDAE is developed for detecting map defects online. An ESDAE-based classifier is finally developed to implement recognition of wafer map defects. The most motivation for developing deep learning and manifold regularization techniques is to achieve higher accuracy and applicability than that of some regular recognizers. The effectiveness of the proposed method has been demonstrated by experimental results from a real-world wafer map dataset (WM-811K).
Author Yu, Jianbo
Author_xml – sequence: 1
  givenname: Jianbo
  orcidid: 0000-0003-3204-2486
  surname: Yu
  fullname: Yu, Jianbo
  email: jianboyu.bob@gmail.com
  organization: School of Mechanical Engineering, Tongji University, Shanghai, China
BookMark eNp9kDtPAkEUhSdGEwHtTWw2sV6cJ7NbIoKaQEwEY7kZ7t7BRZzBmaHw37sEYmFhdYp7Hrlfl5w675CQK0b7jNHydjGf9TllZZ-XkgohT0iHKVXkXEh1Sjq0KGU-UFSfk26Ma0qZlKXukOXYvRsHWGfzZOCj1Xt0vomNW2XDXfLowNcY8jsT29sETdoFzKZogttbrA_ZC4JfuSY13mXeZm_GYshmZts2WYQUL8iZNZuIl0ftkdfJeDF6zKfPD0-j4TQHXrKUA6CphUBeLJcKJNeUg0JloBxoW7O6VLqGWlIodE254ANAbg2qpbRagqaiR24Ovdvgv3YYU7X2u-DayYoL1rLRrJCtix5cEHyMAW21Dc2nCd8Vo9WeZNWSrPYkqyPJNjL4E4Emmf2_KZhm81_w-hBsEPF3pygElUyLH3Z4gwY
CODEN ITSMED
CitedBy_id crossref_primary_10_1002_qre_3217
crossref_primary_10_1109_TSM_2025_3579031
crossref_primary_10_1016_j_enconman_2023_117341
crossref_primary_10_1016_j_measurement_2022_112166
crossref_primary_10_32604_cmc_2023_034005
crossref_primary_10_1364_AO_474272
crossref_primary_10_1016_j_cie_2021_107767
crossref_primary_10_1007_s10845_020_01687_7
crossref_primary_10_1007_s00226_021_01309_2
crossref_primary_10_1016_j_ress_2024_109966
crossref_primary_10_1109_TSM_2020_3022431
crossref_primary_10_1109_TSM_2021_3134625
crossref_primary_10_1109_TSM_2023_3262539
crossref_primary_10_1109_TIM_2022_3152243
crossref_primary_10_1016_j_aei_2023_102272
crossref_primary_10_1109_TSM_2023_3276816
crossref_primary_10_1016_j_engappai_2024_109161
crossref_primary_10_1088_1742_6596_2741_1_012019
crossref_primary_10_1109_TSM_2022_3159246
crossref_primary_10_1016_j_procs_2022_12_253
crossref_primary_10_1016_j_asoc_2025_113380
crossref_primary_10_1016_j_vlsi_2022_04_003
crossref_primary_10_1016_j_ijpe_2024_109275
crossref_primary_10_1016_j_cie_2021_107679
crossref_primary_10_1016_j_eswa_2021_114820
crossref_primary_10_1109_JETCAS_2025_3575272
crossref_primary_10_1016_j_compind_2023_103911
crossref_primary_10_1007_s10586_023_04115_6
crossref_primary_10_1115_1_4065276
crossref_primary_10_1109_ACCESS_2021_3068378
crossref_primary_10_3390_app12052721
crossref_primary_10_1109_ACCESS_2020_3029127
crossref_primary_10_1109_ACCESS_2024_3422616
crossref_primary_10_1016_j_engappai_2024_109070
crossref_primary_10_1109_ACCESS_2021_3106171
crossref_primary_10_1108_RIA_04_2023_0043
crossref_primary_10_1016_j_egyr_2021_11_021
crossref_primary_10_1016_j_jmsy_2021_05_008
Cites_doi 10.1145/1390156.1390294
10.1016/j.engappai.2012.03.016
10.1109/TSM.2014.2364237
10.1109/ICPHM.2016.7542865
10.1016/j.eswa.2006.07.011
10.1109/TII.2010.2092783
10.1080/07408170701592556
10.1016/j.ymssp.2017.06.022
10.1561/2200000006
10.1109/TII.2015.2481719
10.1016/j.neunet.2018.07.011
10.1109/TPAMI.2013.50
10.1080/07408170600733236
10.1016/j.jprocont.2008.04.008
10.1109/TASE.2013.2277603
10.1109/TPAMI.2012.277
10.1007/s00521-013-1442-7
10.1126/science.290.5500.2319
10.1109/TIM.2017.2698738
10.1109/TSM.2011.2154870
10.1109/TSM.2014.2388192
10.1007/s10845-009-0369-4
10.1126/science.290.5500.2323
10.1016/S0169-7439(00)00062-9
10.1016/j.eswa.2009.01.003
10.1080/00207543.2011.574502
10.1109/TSM.2008.2000269
10.1109/TSM.2015.2497264
10.1016/j.eswa.2006.04.014
10.1109/TKDE.2010.259
10.1016/j.eswa.2007.09.023
10.3233/IDA-2002-6504
10.1109/TNNLS.2014.2329097
10.1109/66.857947
10.1109/66.661284
10.1016/j.ins.2016.02.044
10.1016/j.ejor.2005.11.032
10.1006/jvci.1999.0413
10.1109/TSM.2015.2486383
10.1016/j.neucom.2015.07.130
10.1016/j.neucom.2012.11.008
10.1038/nature14539
10.1080/02772240600610822
10.1109/TIT.1962.1057692
10.1109/TSM.2012.2196058
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TSM.2019.2940334
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1558-2345
EndPage 624
ExternalDocumentID 10_1109_TSM_2019_2940334
8830417
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71777173
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for Central Universities
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-ccead33e28bb5c42702c5e5ac967fd1d957dcd40c87d02326ce2fae5b4f74c703
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502719000042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-6507
IngestDate Sun Nov 30 05:06:47 EST 2025
Tue Nov 18 22:10:11 EST 2025
Sat Nov 29 05:13:41 EST 2025
Wed Aug 27 02:43:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ccead33e28bb5c42702c5e5ac967fd1d957dcd40c87d02326ce2fae5b4f74c703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3204-2486
PQID 2312017184
PQPubID 85442
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TSM_2019_2940334
proquest_journals_2312017184
ieee_primary_8830417
crossref_primary_10_1109_TSM_2019_2940334
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on semiconductor manufacturing
PublicationTitleAbbrev TSM
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
he (ref43) 2004
ref15
ref14
ref52
ref55
ref11
ref10
ref17
ref16
ref19
ref18
andrew (ref47) 2016
tenenbaum (ref44) 2000; 290
ref50
mesnil (ref40) 2011; 7
ref46
ref48
tan (ref23) 2015; 26
ref49
hu (ref51) 1962; 8
ref8
ref7
ref9
ref4
ref3
ref6
ref5
mohanaiah (ref53) 2013; 3
ref35
ref34
ref37
ref36
ref31
ref30
krizhevsky (ref29) 2012
ref32
ref2
ref1
ref39
belkin (ref45) 2006; 7
zhao (ref33) 2016
roweis (ref42) 2000; 290
glorot (ref41) 2011
vincent (ref38) 2010; 11
ref24
ref26
ref25
ref20
ref22
ref21
ref27
gonzalez (ref54) 2008
lecun (ref28) 2015; 521
References_xml – volume: 11
  start-page: 3371
  year: 2010
  ident: ref38
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref37
  doi: 10.1145/1390156.1390294
– ident: ref25
  doi: 10.1016/j.engappai.2012.03.016
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref45
  article-title: Manifold regularization: A geometric framework for learning form labeled and unlabeled examples
  publication-title: J Mach Learn Res
– year: 2016
  ident: ref47
  publication-title: UFLDL Tutorial
– ident: ref4
  doi: 10.1109/TSM.2014.2364237
– ident: ref34
  doi: 10.1109/ICPHM.2016.7542865
– ident: ref17
  doi: 10.1016/j.eswa.2006.07.011
– ident: ref16
  doi: 10.1109/TII.2010.2092783
– ident: ref9
  doi: 10.1080/07408170701592556
– ident: ref36
  doi: 10.1016/j.ymssp.2017.06.022
– ident: ref27
  doi: 10.1561/2200000006
– ident: ref48
  doi: 10.1145/1390156.1390294
– ident: ref22
  doi: 10.1109/TII.2015.2481719
– ident: ref56
  doi: 10.1016/j.neunet.2018.07.011
– ident: ref26
  doi: 10.1109/TPAMI.2013.50
– ident: ref1
  doi: 10.1109/TII.2015.2481719
– ident: ref49
  doi: 10.1080/07408170600733236
– ident: ref15
  doi: 10.1016/j.jprocont.2008.04.008
– ident: ref21
  doi: 10.1109/TASE.2013.2277603
– year: 2008
  ident: ref54
  publication-title: Digital Image Processing
– ident: ref39
  doi: 10.1109/TPAMI.2012.277
– ident: ref19
  doi: 10.1007/s00521-013-1442-7
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref44
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: ref35
  doi: 10.1109/TIM.2017.2698738
– ident: ref7
  doi: 10.1109/TSM.2011.2154870
– ident: ref24
  doi: 10.1109/TSM.2014.2388192
– ident: ref11
  doi: 10.1007/s10845-009-0369-4
– start-page: 153
  year: 2004
  ident: ref43
  article-title: Locality preserving projections
  publication-title: Proc Conf Adv Neural Inf Process Syst
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref42
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– start-page: 513
  year: 2011
  ident: ref41
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
  publication-title: Proc ICML
– ident: ref57
  doi: 10.1016/S0169-7439(00)00062-9
– ident: ref20
  doi: 10.1016/j.eswa.2009.01.003
– ident: ref10
  doi: 10.1080/00207543.2011.574502
– volume: 3
  start-page: 290
  year: 2013
  ident: ref53
  article-title: Image texture feature extraction using GLCM approach
  publication-title: Int J Sci Res Publ
– ident: ref52
  doi: 10.1109/TSM.2008.2000269
– ident: ref3
  doi: 10.1109/TSM.2015.2497264
– ident: ref13
  doi: 10.1016/j.eswa.2006.04.014
– ident: ref46
  doi: 10.1109/TKDE.2010.259
– ident: ref8
  doi: 10.1016/j.eswa.2007.09.023
– ident: ref55
  doi: 10.3233/IDA-2002-6504
– year: 2016
  ident: ref33
  article-title: Deep learning and its applications to machine health monitoring: A survey
  publication-title: arXiv preprint arXiv 1612 07640
– volume: 26
  start-page: 933
  year: 2015
  ident: ref23
  article-title: Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2329097
– volume: 7
  start-page: 1
  year: 2011
  ident: ref40
  article-title: Unsupervised and transfer learning challenge: A deep learning approach
  publication-title: Proc JMLR Workshop Conf
– ident: ref5
  doi: 10.1109/66.857947
– ident: ref12
  doi: 10.1109/66.661284
– ident: ref30
  doi: 10.1016/j.ins.2016.02.044
– ident: ref6
  doi: 10.1016/j.ejor.2005.11.032
– start-page: 1097
  year: 2012
  ident: ref29
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref50
  doi: 10.1006/jvci.1999.0413
– ident: ref2
  doi: 10.1109/TSM.2015.2486383
– ident: ref31
  doi: 10.1016/j.neucom.2015.07.130
– ident: ref32
  doi: 10.1016/j.neucom.2012.11.008
– volume: 521
  start-page: 436
  year: 2015
  ident: ref28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref14
  doi: 10.1080/02772240600610822
– volume: 8
  start-page: 179
  year: 1962
  ident: ref51
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Trans Inf Theory
  doi: 10.1109/TIT.1962.1057692
– ident: ref18
  doi: 10.1109/TSM.2012.2196058
SSID ssj0014497
Score 2.4339924
Snippet In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 613
SubjectTerms Deep learning
defect recognition
Defects
Feature extraction
Feature recognition
Learning systems
Machine learning
manifold regularization
Manifolds
Manufacturing
Manufacturing processes
Noise reduction
Pattern recognition
Regularization
stacked denoising autoencoder
Wafer map
Title Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
URI https://ieeexplore.ieee.org/document/8830417
https://www.proquest.com/docview/2312017184
Volume 32
WOSCitedRecordID wos000502719000042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2345
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014497
  issn: 0894-6507
  databaseCode: RIE
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBFsO62TTfN0SceVMQHeit5THVBWunu-vudpO2iKIK3HpIQ-iWZL5mZbwD2-wK5NnRNVYroG490GGhO-4qYrKKzEcloeJ3ZK3Fzkz4_y9spOJzkwiCiDz7DI_fpffm2NGP3VNZNU7p8h2IapoUQda7WxGPAuaxVPSUPiHWI1iXZk92H-2sXwyWPIsl7ccy_mSBfU-XHQeyty8XS_-a1DIsNi2THNewrMIXFKsy1ScbDVVj4ojO4Bvq8ePWefkbckratZWdYlAP3TMCOx6PSiVlarIITMmmWOVY4rpA10qsvjHgtu2sDjcqClTl7UjlW7Fq900g-IGQdHi_OH04vg6a4QmAiGY4CY2gNxTFGqdaJ4S4tzSSYKCP7IrehlYmwxvKeSYUlux65ymG5wkTzXHBD58QGzBRlgZvAXCZ6Ik0eJpjzOOeOMygbxlbH2qh-2oFu-78z0yiPuwIYb5m_gfRkRghlDqGsQagDB5Me77Xqxh9t1xwik3YNGB3YaSHNmm05zIjMRk4gKOVbv_fahnk3dp1suAMzo2qMuzBrPkaDYbXnV9wnMi3TAQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BrUQ5tOWjYltafOCCRNhNMtnER9qCqNhdVWUR3CJ_TNqVUIKyu_z-jp1k1aoIqbccbCfKsz3Pnpk3AEfDlFAbPqYqxfQNIx0GGnldMZNVvDcSGw2vMztKJ5Ps7k5-X4OTVS4MEfngMzp1j96XbyuzdFdl_Szjw3eYrsOLBDEKm2ytlc8AUTa6nhID5h1p55QcyP70euyiuORpJHEQx_iXEfJVVf7Zir19uXjzf1_2Fl63PFKcNcBvwxqVO7DZpRnPd2DrD6XBXdDn5S_v6xfMLnnhWvGVymrmLgrE2XJROTlLS3XwmY2aFY4XLmsSrfjqT8HMVvzoQo2qUlSFuFUF1WKsHngkHxKyBzcX59Mvl0FbXiEwkQwXgTE8i-KYokzrxKBLTDMJJcrIYVrY0MoktcbiwGSpZcseudphhaJEY5Gi4Z3iHWyUVUn7IFwueiJNESZUYFygYw3KhrHVsTZqmPWg3_3v3LTa464Exn3uzyADmTNCuUMobxHqwfGqx0Oju_FM212HyKpdC0YPDjpI83ZhznOms5GTCMrw_dO9DmHzcjoe5aNvk6sP8Mq9p0k9PICNRb2kj_DSPC5m8_qTn32_AVNC1kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Stacked+Denoising+Autoencoder-Based+Feature+Learning+for+Recognition+of+Wafer+Map+Defects&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Yu%2C+Jianbo&rft.date=2019-11-01&rft.issn=0894-6507&rft.eissn=1558-2345&rft.volume=32&rft.issue=4&rft.spage=613&rft.epage=624&rft_id=info:doi/10.1109%2FTSM.2019.2940334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSM_2019_2940334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon