Coordinated Control of Spacecraft's Attitude and End-Effector for Space Robots

This letter addresses the coordinated control of the spacecraft's attitude and the end-effector pose of a manipulator-equipped space robot. A controller is proposed to simultaneously regulate the spacecraft's attitude, the global center-of-mass, and the end-effector pose. The control is ba...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 4; no. 2; pp. 2108 - 2115
Main Authors: Giordano, Alessandro Massimo, Ott, Christian, Albu-Schaffer, Alin
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This letter addresses the coordinated control of the spacecraft's attitude and the end-effector pose of a manipulator-equipped space robot. A controller is proposed to simultaneously regulate the spacecraft's attitude, the global center-of-mass, and the end-effector pose. The control is based on a triangular actuation decomposition that decouples the end-effector task from the spacecraft's force actuator, increasing fuel efficiency. The strategy is validated in hardware using a robotic motion simulator composed of a seven degrees-of-freedom (DOF) arm mounted on a six DOF base. The tradeoff between control requirements and fuel consumption is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2019.2899433