Fault Diagnosis of an Autonomous Vehicle With an Improved SVM Algorithm Subject to Unbalanced Datasets

Safety is one of the key requirements for automated vehicles and fault diagnosis is an effective technique to enhance the vehicle safety. The model-based fault diagnosis method models the fault into the system model and estimates the faults by observer. In this article, to avoid the complexity of de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 68; no. 7; pp. 6248 - 6256
Main Authors: Shi, Qian, Zhang, Hui
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0046, 1557-9948
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Safety is one of the key requirements for automated vehicles and fault diagnosis is an effective technique to enhance the vehicle safety. The model-based fault diagnosis method models the fault into the system model and estimates the faults by observer. In this article, to avoid the complexity of designing observer, we investigate the problem of steering actuator fault diagnosis for automated vehicles based on the approach of model-based support vector machine (SVM) classification. The system model is utilized to generate the residual signal as the training data and the data-based algorithm of the SVM classification is employed to diagnose the fault. Due to the phenomena of data unbalance induced poor performance of the data-driven method, an undersampling procedure with the approach of linear discriminant analysis and a threshold adjustment using the algorithm of grey wolf optimizer are proposed to modify and improve the performance of classification and fault diagnosis. Various comparisons are carried out based on widely used datasets. The comparison results show that the proposed algorithm has superiority on the classification over existing methods. Experimental results and comparisons of an automated vehicle illustrate the effectiveness of the proposed algorithm on the steering actuator fault diagnosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2020.2994868