Distributed Deep Reinforcement Learning-Based Energy and Emission Management Strategy for Hybrid Electric Vehicles

Advanced algorithms can promote the development of energy management strategies (EMSs) as a key technology in hybrid electric vehicles (HEVs). Reinforcement learning (RL) with distributed structure can significantly improve training efficiency in complex environments, and multi-threaded parallel com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on vehicular technology Jg. 70; H. 10; S. 9922 - 9934
Hauptverfasser: Tang, Xiaolin, Chen, Jiaxin, Liu, Teng, Qin, Yechen, Cao, Dongpu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced algorithms can promote the development of energy management strategies (EMSs) as a key technology in hybrid electric vehicles (HEVs). Reinforcement learning (RL) with distributed structure can significantly improve training efficiency in complex environments, and multi-threaded parallel computing provides a reliable algorithm basis for promoting adaptability. Dedicated to trying more efficient deep reinforcement learning (DRL) algorithms, this paper proposed a deep q-network (DQN)-based energy and emission management strategy (E&EMS) at first. Then, two distributed DRL algorithms, namely asynchronous advantage actor-critic (A3C) and distributed proximal policy optimization (DPPO), were adopted to propose EMSs, respectively. Finally, emission optimization was taken into account and then distributed DRL-based E&EMSs were proposed. Regarding dynamic programming (DP) as the optimal benchmark, simulation results show that three DRL-based control strategies can achieve near-optimal fuel economy and outstanding computational efficiency, and compared with DQN, two distributed DRL algorithms have improved the learning efficiency by four times.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2021.3107734