Over-the-Air Computation in Correlated Channels

Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By avoiding such costly transmissions, OTA computation schemes can achieve a better-than-linear (depending on the function, often logarithmic or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 69; s. 5739 - 5755
Hlavní autoři: Frey, Matthias, Bjelakovic, Igor, Stanczak, Slawomir
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By avoiding such costly transmissions, OTA computation schemes can achieve a better-than-linear (depending on the function, often logarithmic or even constant) scaling of the communication cost as the number of transmitters grows. In this work, we propose and analyze an analog OTA computation scheme for a class of functions that contains linear functions as well as some nonlinear functions such as <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula>-norms of vectors. We prove error bounds that are valid for fast-fading channels and all distributions of fading and noise in the class of sub-Gaussian distributions. This class includes Gaussian distributions, but also many other practically relevant cases such as Class A Middleton noise and fading with dominant line-of-sight components. Moreover, there can be correlations in the fading and noise so that the presented results also apply to, for example, block fading channels and channels with bursty interference. There is no assumption that the distributed function arguments follow a particular probability law; in particular, they do not need to be independent or identically distributed. Our analysis is nonasymptotic and therefore provides error bounds that are valid for a finite number of channel uses. OTA computation has a huge potential for reducing communication cost in applications such as Machine Learning (ML)-based distributed anomaly detection in large wireless sensor networks. We illustrate this potential through extensive numerical simulations.
AbstractList Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By avoiding such costly transmissions, OTA computation schemes can achieve a better-than-linear (depending on the function, often logarithmic or even constant) scaling of the communication cost as the number of transmitters grows. In this work, we propose and analyze an analog OTA computation scheme for a class of functions that contains linear functions as well as some nonlinear functions such as [Formula Omitted]-norms of vectors. We prove error bounds that are valid for fast-fading channels and all distributions of fading and noise in the class of sub-Gaussian distributions. This class includes Gaussian distributions, but also many other practically relevant cases such as Class A Middleton noise and fading with dominant line-of-sight components. Moreover, there can be correlations in the fading and noise so that the presented results also apply to, for example, block fading channels and channels with bursty interference. There is no assumption that the distributed function arguments follow a particular probability law; in particular, they do not need to be independent or identically distributed. Our analysis is nonasymptotic and therefore provides error bounds that are valid for a finite number of channel uses. OTA computation has a huge potential for reducing communication cost in applications such as Machine Learning (ML)-based distributed anomaly detection in large wireless sensor networks. We illustrate this potential through extensive numerical simulations.
Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By avoiding such costly transmissions, OTA computation schemes can achieve a better-than-linear (depending on the function, often logarithmic or even constant) scaling of the communication cost as the number of transmitters grows. In this work, we propose and analyze an analog OTA computation scheme for a class of functions that contains linear functions as well as some nonlinear functions such as <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula>-norms of vectors. We prove error bounds that are valid for fast-fading channels and all distributions of fading and noise in the class of sub-Gaussian distributions. This class includes Gaussian distributions, but also many other practically relevant cases such as Class A Middleton noise and fading with dominant line-of-sight components. Moreover, there can be correlations in the fading and noise so that the presented results also apply to, for example, block fading channels and channels with bursty interference. There is no assumption that the distributed function arguments follow a particular probability law; in particular, they do not need to be independent or identically distributed. Our analysis is nonasymptotic and therefore provides error bounds that are valid for a finite number of channel uses. OTA computation has a huge potential for reducing communication cost in applications such as Machine Learning (ML)-based distributed anomaly detection in large wireless sensor networks. We illustrate this potential through extensive numerical simulations.
Author Stanczak, Slawomir
Frey, Matthias
Bjelakovic, Igor
Author_xml – sequence: 1
  givenname: Matthias
  orcidid: 0000-0003-3016-2644
  surname: Frey
  fullname: Frey, Matthias
  email: matthias.frey@tu-berlin.de
  organization: Network Information Theory Group, Technische Universität Berlin, Berlin, Germany
– sequence: 2
  givenname: Igor
  surname: Bjelakovic
  fullname: Bjelakovic, Igor
  email: igor.bjelakovic@hhi.fraunhofer.de
  organization: Fraunhofer Heinrich Hertz Institute, Berlin, Germany
– sequence: 3
  givenname: Slawomir
  orcidid: 0000-0003-3829-4668
  surname: Stanczak
  fullname: Stanczak, Slawomir
  email: stanczak@ieee.org
  organization: Fraunhofer Heinrich Hertz Institute, Berlin, Germany
BookMark eNp9kE1LAzEQhoNUsK3eBS8Fz2kz-WpyLItWoVDBCt5C3J2lKdvdmt0K_ntTtnjw4CFMBt5nZnhGZFA3NRJyC2wKwOxs8_oy5YzDVADTAOqCDMFKoEzO9SD9mRJUmfn7FRm17Y4xkNLqIZmtvzDSbot0EeIka_aHY-e70NSTUKc2Rqx8h8Uk2_q6xqq9Jpelr1q8OdcxeXt82GRPdLVePmeLFc25hY5-lHlpBS-hBCtEnjMskWtltTRWQGG4AK-hyFGAMcIzZaQuvCzQ6jkKXogxue_nHmLzecS2c7vmGOu00nFlTXpcm5TSfSqPTdtGLF0e-vO76EPlgLmTHJfkuJMcd5aTQPYHPMSw9_H7P-SuRwIi_satAqs0Fz9w9m-K
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_COMST_2023_3264649
crossref_primary_10_1109_TSP_2024_3352405
crossref_primary_10_1016_j_fmre_2024_01_011
crossref_primary_10_1109_TSP_2024_3351469
crossref_primary_10_1109_JIOT_2023_3292882
crossref_primary_10_3390_s23083824
crossref_primary_10_1109_LCSYS_2024_3402123
crossref_primary_10_1109_JSAC_2025_3574622
crossref_primary_10_1109_LCOMM_2022_3187559
crossref_primary_10_1109_TWC_2023_3245304
crossref_primary_10_1109_TWC_2024_3412690
crossref_primary_10_1109_TIT_2025_3542673
Cites_doi 10.1109/TWC.2019.2961673
10.1016/j.csda.2011.04.006
10.1109/TWC.2020.2974748
10.1145/3298981
10.1109/ISIT.2009.5205264
10.1109/COMST.2020.3007787
10.1109/TCOMM.2013.072913.120815
10.1109/18.825799
10.1090/S0002-9939-1982-0652441-4
10.1109/TWC.2020.2993703
10.1109/JIOT.2020.3015489
10.1109/TSP.2005.861896
10.1109/TSP.2013.2272921
10.1109/ICC40277.2020.9148853
10.1109/TIT.2011.2165816
10.1109/TSP.2020.2981904
10.1109/ICC.2016.7510770
10.1109/ISTC.2016.7593132
10.1109/GlobalSIP45357.2019.8969185
10.1109/TSP.2006.887564
10.1109/TSP.2020.2989580
10.1007/978-1-4612-0653-8
10.1109/18.761256
10.1090/mmono/188
10.1109/ALLERTON.2019.8919875
10.1109/SPAWC.2019.8815597
10.1109/TIT.2007.904785
10.1007/3-540-36978-3_11
10.1109/49.233212
10.1109/ISIT.2011.6033876
10.1093/acprof:oso/9780199535255.001.0001
10.1109/TSP.2020.2970338
10.1109/ISIT44484.2020.9174426
10.1002/9780470661291
10.1109/TWC.2019.2946245
10.1109/TIT.2016.2593633
10.1109/PIMRC.2019.8904164
10.1002/sta4.314
10.1109/WCL.2014.022314.140005
10.1109/TWC.2014.2380317
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2021.3106115
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 5755
ExternalDocumentID 10_1109_TSP_2021_3106115
9519562
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft; German Research Foundation
  funderid: 10.13039/501100001659
– fundername: Annual Allerton Conference on Communication
– fundername: Compressed Sensing in Information Processing
– fundername: NVIDIA Corporation
  grantid: DGX-1
– fundername: Nokia University Donation
– fundername: Cyber-Physical Networking
  grantid: STA 864/7
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-bfcf932f1f1933cc0efe2659648931d8231a61dce31883a05846da4de967e32d3
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719561100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:15:38 EDT 2025
Sat Nov 29 04:10:54 EST 2025
Tue Nov 18 22:22:54 EST 2025
Wed Aug 27 02:27:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bfcf932f1f1933cc0efe2659648931d8231a61dce31883a05846da4de967e32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3016-2644
0000-0003-3829-4668
PQID 2598259268
PQPubID 85478
PageCount 17
ParticipantIDs crossref_primary_10_1109_TSP_2021_3106115
ieee_primary_9519562
proquest_journals_2598259268
crossref_citationtrail_10_1109_TSP_2021_3106115
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kone?n? (ref21) 2016
ref13
ref12
mohri (ref45) 2012
ref15
ref14
yin (ref35) 2016
bhatia (ref51) 1989
ref52
ref11
ref10
ref17
ref16
ref19
ref18
buck (ref29) 1976
steinwart (ref43) 2008
pedregosa (ref47) 2011; 12
ref50
ref46
ref48
ref42
ref41
ref44
kolmogorov (ref30) 1957; 114
ref49
ref8
ref7
middleton (ref32) 1993; 2
ref9
ref4
ref3
ref6
ref5
ref40
wainwright (ref37) 2019
ref34
ref36
ref31
ref33
ref2
ref1
ref39
vershynin (ref38) 2018; 47
mcmahan (ref20) 2017
ref24
ref23
ref26
ref25
ref22
ref28
ref27
References_xml – ident: ref24
  doi: 10.1109/TWC.2019.2961673
– ident: ref44
  doi: 10.1016/j.csda.2011.04.006
– year: 2008
  ident: ref43
  publication-title: Support Vector Machines Ser Information Science and Statistics
– ident: ref23
  doi: 10.1109/TWC.2020.2974748
– ident: ref40
  doi: 10.1145/3298981
– year: 2016
  ident: ref21
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: Proc NIPS Workshop Private Multi-Party Mach Learn
– ident: ref9
  doi: 10.1109/ISIT.2009.5205264
– start-page: 1273
  year: 2017
  ident: ref20
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref3
  doi: 10.1109/COMST.2020.3007787
– ident: ref6
  doi: 10.1109/TCOMM.2013.072913.120815
– ident: ref2
  doi: 10.1109/18.825799
– year: 1976
  ident: ref29
  article-title: Approximate complexity and functional representation
  publication-title: Wisconsin Univ-Madison Mathematics Research Center Tech Rep
– ident: ref31
  doi: 10.1090/S0002-9939-1982-0652441-4
– ident: ref16
  doi: 10.1109/TWC.2020.2993703
– ident: ref52
  doi: 10.1109/JIOT.2020.3015489
– ident: ref41
  doi: 10.1109/TSP.2005.861896
– volume: 2
  start-page: 137
  year: 1993
  ident: ref32
  article-title: Elements of weak signal detection in non-gaussian noise environments
  publication-title: Proc Adv Stat Signal Process
– start-page: 151
  year: 1989
  ident: ref51
  article-title: Comparing a matrix to its off-diagonal part
  publication-title: The Gohberg Anniversary Collection
– ident: ref7
  doi: 10.1109/TSP.2013.2272921
– ident: ref26
  doi: 10.1109/ICC40277.2020.9148853
– ident: ref11
  doi: 10.1109/TIT.2011.2165816
– ident: ref18
  doi: 10.1109/TSP.2020.2981904
– volume: 114
  start-page: 953
  year: 1957
  ident: ref30
  article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
  publication-title: Dokl Akad Nauk SSSR
– ident: ref15
  doi: 10.1109/ICC.2016.7510770
– ident: ref13
  doi: 10.1109/ISTC.2016.7593132
– ident: ref28
  doi: 10.1109/GlobalSIP45357.2019.8969185
– year: 2012
  ident: ref45
  publication-title: Foundations of Machine Learning Ser Adaptive Computation and Machine Learning
– ident: ref42
  doi: 10.1109/TSP.2006.887564
– ident: ref25
  doi: 10.1109/TSP.2020.2989580
– ident: ref49
  doi: 10.1007/978-1-4612-0653-8
– ident: ref34
  doi: 10.1109/18.761256
– volume: 47
  year: 2018
  ident: ref38
  publication-title: High Dimensional Probability An Introduction with Applications in Data Science ser Cambridge Series in Statistical and Probabilistic Mathematics
– ident: ref36
  doi: 10.1090/mmono/188
– ident: ref1
  doi: 10.1109/ALLERTON.2019.8919875
– ident: ref46
  doi: 10.1109/SPAWC.2019.8815597
– ident: ref4
  doi: 10.1109/TIT.2007.904785
– year: 2016
  ident: ref35
  publication-title: Propagation channel characterization parameter estimation and modeling for wireless communications
– ident: ref5
  doi: 10.1007/3-540-36978-3_11
– ident: ref33
  doi: 10.1109/49.233212
– ident: ref10
  doi: 10.1109/ISIT.2011.6033876
– ident: ref50
  doi: 10.1093/acprof:oso/9780199535255.001.0001
– ident: ref17
  doi: 10.1109/TSP.2020.2970338
– ident: ref27
  doi: 10.1109/ISIT44484.2020.9174426
– ident: ref48
  doi: 10.1002/9780470661291
– year: 2019
  ident: ref37
  publication-title: High-Dimensional Statistics A Non-Asymptotic Viewpoint ser Cambridge Series in Statistical and Probabilistic Mathematics
– ident: ref22
  doi: 10.1109/TWC.2019.2946245
– ident: ref12
  doi: 10.1109/TIT.2016.2593633
– ident: ref19
  doi: 10.1109/PIMRC.2019.8904164
– ident: ref39
  doi: 10.1002/sta4.314
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref47
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref14
  doi: 10.1109/WCL.2014.022314.140005
– ident: ref8
  doi: 10.1109/TWC.2014.2380317
SSID ssj0014496
Score 2.4442356
Snippet Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5739
SubjectTerms Anomalies
boosting
Channels
Combined source-channel coding
Computation
Correlation
distributed computing
Distributed databases
Fading
Fading channels
Linear functions
Machine learning
Noise
Norms
Random variables
robustness
Transmitters
Wireless communication
Wireless sensor networks
Title Over-the-Air Computation in Correlated Channels
URI https://ieeexplore.ieee.org/document/9519562
https://www.proquest.com/docview/2598259268
Volume 69
WOSCitedRecordID wos000719561100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEf_JridEoffBGMbfqRNI9DHD7NgRP2VtrkAgPppOv8-03SrgwUwbcWklDu0tzv7nL3A7hLuTRANUkITwpOYoZIRMEUYcrYN4pacSod2QSfTtPFQsx68NDVwiCiu3yGj_bR5fLVSm5sqMwXthWKPXD3OGdNrVaXMYhjx8Vl4EJEkpQvtinJQPjzt5lxBENq_FNjvSwB7o4JcpwqPw5iZ10mx__7rhM4alGkN27Ufgo9LM_gcKe34AD8V7NJiYF3ZLysvIa8wWnBW5bmtXJFLKg8W15QGgN5Du-T5_nTC2nZEYgMBa1JoaU24EtTbTBYJGWAGkOWCGbbyVBl03s5o0raIGca5YFFGiqPFQrGMQpVdAH9clXiJXgsZTLiiupCGwAnVWrWoioPmM4VxxiH4G8Flsm2dbhlsPjInAsRiMyIOLMizloRD-G-m_HZtM34Y-zAirQb10pzCKOtTrL2v1pnoe03mIiQpVe_z7qGA7t2EyQZQb-uNngD-_KrXq6rW7dlvgFBuL0M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFNQHv6Y4ndoHXwTjmn4kzeMQx8Q5B07YW2mTCwykk33495tkXRkogm8tJG25S3O_u8vdD-Am4dIA1TgmPM45iRgiETlThClj3yhqxal0ZBN8MEjGYzGswV1VC4OI7vAZ3ttLl8tXU7m0obK2sK1Q7Ia7ZZmzymqtKmcQRY6NywCGkMQJH6-Tkr5oj96GxhUMqPFQjf2yFLgbRsixqvzYip196R7878sOYb_EkV5npfgjqGFxDHsb3QUb0H41y5QYgEc6k5m3om9wevAmhbmduTIWVJ4tMCiMiTyB9-7j6KFHSn4EIgNBFyTXUhv4pak2KCyU0keNAYsFsw1lqLIJvoxRJW2YMwkz32INlUUKBeMYBio8hXoxLfAMPJYwGXJFda4NhJMqMc-iKvOZzhTHCJvQXgsslWXzcMth8ZE6J8IXqRFxakWcliJuwm0143PVOOOPsQ0r0mpcKc0mtNY6Scs_a54GtuNgLAKWnP8-6xp2eqOXftp_GjxfwK59zypk0oL6YrbES9iWX4vJfHblls83Sk7AVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over-the-Air+Computation+in+Correlated+Channels&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Frey%2C+Matthias&rft.au=Bjelakovic%2C+Igor&rft.au=Stanczak%2C+Slawomir&rft.date=2021&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=69&rft.spage=5739&rft.epage=5755&rft_id=info:doi/10.1109%2FTSP.2021.3106115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2021_3106115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon