Over-the-Air Computation in Correlated Channels

Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By avoiding such costly transmissions, OTA computation schemes can achieve a better-than-linear (depending on the function, often logarithmic or...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 69; pp. 5739 - 5755
Main Authors: Frey, Matthias, Bjelakovic, Igor, Stanczak, Slawomir
Format: Journal Article
Language:English
Published: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over-the-Air (OTA) computation is the problem of computing functions of distributed data without transmitting the entirety of the data to a central point. By avoiding such costly transmissions, OTA computation schemes can achieve a better-than-linear (depending on the function, often logarithmic or even constant) scaling of the communication cost as the number of transmitters grows. In this work, we propose and analyze an analog OTA computation scheme for a class of functions that contains linear functions as well as some nonlinear functions such as <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula>-norms of vectors. We prove error bounds that are valid for fast-fading channels and all distributions of fading and noise in the class of sub-Gaussian distributions. This class includes Gaussian distributions, but also many other practically relevant cases such as Class A Middleton noise and fading with dominant line-of-sight components. Moreover, there can be correlations in the fading and noise so that the presented results also apply to, for example, block fading channels and channels with bursty interference. There is no assumption that the distributed function arguments follow a particular probability law; in particular, they do not need to be independent or identically distributed. Our analysis is nonasymptotic and therefore provides error bounds that are valid for a finite number of channel uses. OTA computation has a huge potential for reducing communication cost in applications such as Machine Learning (ML)-based distributed anomaly detection in large wireless sensor networks. We illustrate this potential through extensive numerical simulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2021.3106115