Adaptive, Optimal, Virtual Synchronous Generator Control of Three-Phase Grid-Connected Inverters Under Different Grid Conditions-An Adaptive Dynamic Programming Approach
This article proposes an adaptive, optimal, data-driven control approach based on reinforcement learning and adaptive dynamic programming to the three-phase grid-connected inverter employed in virtual synchronous generators (VSGs). This article takes into account unknown system dynamics and differen...
Uložené v:
| Vydané v: | IEEE transactions on industrial informatics Ročník 18; číslo 11; s. 7388 - 7399 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This article proposes an adaptive, optimal, data-driven control approach based on reinforcement learning and adaptive dynamic programming to the three-phase grid-connected inverter employed in virtual synchronous generators (VSGs). This article takes into account unknown system dynamics and different grid conditions, including balanced/unbalanced grids, voltage drop/sag, and weak grids. The proposed method is based on value iteration, which does not rely on an initial admissible control policy for learning. Considering the premise that the VSG control should stabilize the closed-loop dynamics, the VSG outputs are optimally regulated through the adaptive, optimal control strategy proposed in this article. Comparative simulations and experimental results validate the proposed method's effectiveness and reveal its practicality and implementation. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1551-3203 1941-0050 |
| DOI: | 10.1109/TII.2021.3138893 |