Adaptive, Optimal, Virtual Synchronous Generator Control of Three-Phase Grid-Connected Inverters Under Different Grid Conditions-An Adaptive Dynamic Programming Approach

This article proposes an adaptive, optimal, data-driven control approach based on reinforcement learning and adaptive dynamic programming to the three-phase grid-connected inverter employed in virtual synchronous generators (VSGs). This article takes into account unknown system dynamics and differen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 18; číslo 11; s. 7388 - 7399
Hlavní autori: Wang, Zhongyang, Yu, Yunjun, Gao, Weinan, Davari, Masoud, Deng, Chao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article proposes an adaptive, optimal, data-driven control approach based on reinforcement learning and adaptive dynamic programming to the three-phase grid-connected inverter employed in virtual synchronous generators (VSGs). This article takes into account unknown system dynamics and different grid conditions, including balanced/unbalanced grids, voltage drop/sag, and weak grids. The proposed method is based on value iteration, which does not rely on an initial admissible control policy for learning. Considering the premise that the VSG control should stabilize the closed-loop dynamics, the VSG outputs are optimally regulated through the adaptive, optimal control strategy proposed in this article. Comparative simulations and experimental results validate the proposed method's effectiveness and reveal its practicality and implementation.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2021.3138893