Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding

We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 66; no. 3; pp. 1920 - 1933
Main Authors: Yu, Qian, Maddah-Ali, Mohammad Ali, Avestimehr, A. Salman
Format: Journal Article
Language:English
Published: New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled polynomial code, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show that it provides orderwise improvement over the conventional schemes for straggler mitigation. Furthermore, we characterize the optimal recovery threshold among all linear coding strategies within a factor of 2 using bilinear complexity, by developing an improved version of the entangled polynomial code. In particular, while evaluating bilinear complexity is a well-known challenging problem, we show that optimal recovery threshold for linear coding strategies can be approximated within a factor of 2 of this fundamental quantity. On the other hand, the improved version of the entangled polynomial code enables further and orderwise reduction in the recovery threshold, compared to its basic version. Finally, we show that the techniques developed in this paper can also be extended to several other problems such as coded convolution and fault-tolerant computing, leading to tight characterizations.
AbstractList We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled polynomial code, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show that it provides orderwise improvement over the conventional schemes for straggler mitigation. Furthermore, we characterize the optimal recovery threshold among all linear coding strategies within a factor of 2 using bilinear complexity, by developing an improved version of the entangled polynomial code. In particular, while evaluating bilinear complexity is a well-known challenging problem, we show that optimal recovery threshold for linear coding strategies can be approximated within a factor of 2 of this fundamental quantity. On the other hand, the improved version of the entangled polynomial code enables further and orderwise reduction in the recovery threshold, compared to its basic version. Finally, we show that the techniques developed in this paper can also be extended to several other problems such as coded convolution and fault-tolerant computing, leading to tight characterizations.
Author Yu, Qian
Maddah-Ali, Mohammad Ali
Avestimehr, A. Salman
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-2034-5941
  surname: Yu
  fullname: Yu, Qian
  email: qyu880@usc.edu
  organization: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Mohammad Ali
  orcidid: 0000-0002-3222-1874
  surname: Maddah-Ali
  fullname: Maddah-Ali, Mohammad Ali
  email: maddah_ali@sharif.edu
  organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
– sequence: 3
  givenname: A. Salman
  surname: Avestimehr
  fullname: Avestimehr, A. Salman
  email: avestimehr@ee.usc.edu
  organization: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
BookMark eNp9kEtLAzEUhYNUsK3uBTcB11PzbuJOqlWhxYV1PWYytyUyzdRMBvTfm1px4cLVfXDOPZdvhAahDYDQOSUTSom5Wj2uJoxQM2FGca3EERpSKaeFUVIM0JAQqgsjhD5Bo657y6OQlA3R63OKdrNpIOKlT35jk28D9gHf-i5FX_UJary0uf3Ay75Jftd49y26xvM-1HYLIdkGL_zWpw7bUOOnXfLbvJq1tQ-bU3S8tk0HZz91jF7md6vZQ7F4un-c3SwKxwxNha2mSlVScUdsJRnUqnKgppZpLtZOg5GWWqEZr7V0FgiICmitNalAcCcqPkaXh7u72L730KXyre1jyJEl41IbyhQ3WUUOKhfbrouwLncxPxs_S0rKPccycyz3HMsfjtmi_licT98EMjnf_Ge8OBg9APzmaCOMVIR_AaShg4M
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_JSAC_2022_3142366
crossref_primary_10_1109_JSAC_2022_3142364
crossref_primary_10_1109_TIT_2021_3127910
crossref_primary_10_1109_TVT_2025_3533576
crossref_primary_10_1109_TWC_2023_3307140
crossref_primary_10_3233_IDT_230309
crossref_primary_10_1016_j_envres_2021_112572
crossref_primary_10_1109_TCOMM_2021_3056089
crossref_primary_10_1109_TIT_2025_3541808
crossref_primary_10_1109_TIT_2025_3529680
crossref_primary_10_1109_JIOT_2024_3394714
crossref_primary_10_1109_TIT_2025_3556384
crossref_primary_10_1109_TWC_2024_3366547
crossref_primary_10_3390_electronics13224403
crossref_primary_10_1109_TSP_2024_3467262
crossref_primary_10_1109_TCOMM_2021_3107432
crossref_primary_10_1109_TCOMM_2024_3450797
crossref_primary_10_1109_TCOMM_2022_3164056
crossref_primary_10_1109_TIT_2021_3095909
crossref_primary_10_1109_TIT_2024_3380738
crossref_primary_10_1109_TCCN_2022_3174615
crossref_primary_10_1016_j_jksuci_2024_102073
crossref_primary_10_1109_TIT_2021_3127920
crossref_primary_10_1109_TCOMM_2023_3275166
crossref_primary_10_1109_TIT_2024_3382257
crossref_primary_10_1016_j_comnet_2025_111381
crossref_primary_10_1016_j_phycom_2024_102499
crossref_primary_10_1109_TIT_2021_3064827
crossref_primary_10_1109_TETC_2025_3562192
crossref_primary_10_1109_TIT_2021_3112952
crossref_primary_10_1109_TIT_2024_3510293
crossref_primary_10_1109_TNET_2021_3122873
crossref_primary_10_1109_TCC_2024_3415165
crossref_primary_10_1109_TIT_2025_3573708
crossref_primary_10_1109_TWC_2023_3331263
crossref_primary_10_1109_LCOMM_2020_3044727
crossref_primary_10_1109_TNET_2021_3075377
crossref_primary_10_1109_TPDS_2023_3276888
crossref_primary_10_1109_TIT_2022_3204488
crossref_primary_10_1016_j_hcc_2025_100339
crossref_primary_10_1109_TMC_2024_3418449
crossref_primary_10_1109_TCOMM_2023_3326193
crossref_primary_10_1109_COMST_2021_3091684
crossref_primary_10_3390_e25020266
crossref_primary_10_1016_j_icte_2023_02_002
crossref_primary_10_1109_TIT_2024_3420222
crossref_primary_10_1109_TCOMM_2020_3032196
crossref_primary_10_1109_TCCN_2024_3391317
crossref_primary_10_1109_TIFS_2022_3173417
crossref_primary_10_1109_TIFS_2022_3147642
crossref_primary_10_1109_TIFS_2023_3249565
crossref_primary_10_1109_TIT_2025_3536323
crossref_primary_10_1016_j_ins_2024_120582
crossref_primary_10_1109_JIOT_2024_3442012
crossref_primary_10_1109_TCOMM_2023_3236385
crossref_primary_10_1109_TSC_2024_3395931
crossref_primary_10_1109_TSP_2025_3537409
crossref_primary_10_1109_TIFS_2023_3326970
crossref_primary_10_1109_TMC_2023_3246994
crossref_primary_10_1109_TC_2023_3262922
crossref_primary_10_1109_TIT_2022_3152827
crossref_primary_10_3390_e26060448
crossref_primary_10_1109_TIT_2022_3206868
crossref_primary_10_1109_ACCESS_2020_3031590
crossref_primary_10_1109_JSAC_2022_3142355
crossref_primary_10_1109_TIFS_2024_3450288
crossref_primary_10_1109_TCCN_2024_3502495
crossref_primary_10_1109_JSAC_2022_3142352
crossref_primary_10_3390_e26100881
crossref_primary_10_1109_JSAC_2022_3142358
crossref_primary_10_1109_TIT_2022_3157835
crossref_primary_10_1109_TSP_2022_3182221
crossref_primary_10_1109_TIT_2025_3577019
crossref_primary_10_1109_ACCESS_2021_3135581
crossref_primary_10_1109_TIT_2024_3513693
crossref_primary_10_1109_TC_2024_3387069
crossref_primary_10_1109_TCOMM_2020_2988506
crossref_primary_10_1109_TCOMM_2023_3286420
crossref_primary_10_1109_TIT_2021_3137266
crossref_primary_10_1007_s11227_020_03241_x
crossref_primary_10_1109_TCOMM_2021_3083730
crossref_primary_10_1109_TIFS_2022_3147638
crossref_primary_10_1109_TCOMM_2024_3492071
crossref_primary_10_1109_TIT_2025_3565558
crossref_primary_10_1109_TNSE_2022_3228322
crossref_primary_10_1109_TIT_2021_3068165
crossref_primary_10_1109_TCOMM_2021_3107942
crossref_primary_10_1109_TIT_2021_3050526
crossref_primary_10_1109_TNET_2021_3058685
crossref_primary_10_1109_TIT_2022_3143199
crossref_primary_10_1109_TIT_2023_3283967
crossref_primary_10_1109_TPAMI_2022_3151434
crossref_primary_10_1109_JIOT_2024_3506595
crossref_primary_10_1109_TIFS_2024_3377929
Cites_doi 10.1137/0120004
10.1134/S0965542513120129
10.1109/ISIT.2019.8849245
10.1016/S0747-7171(08)80013-2
10.1109/ICC.2019.8761275
10.1145/2408776.2408794
10.1109/ISIT.2019.8849606
10.1109/MCOM.2017.1600894
10.1109/TIT.2019.2904055
10.1109/ITW44776.2019.8989342
10.1109/ISIT.2017.8006963
10.1007/978-3-642-23397-5_10
10.1109/ISIT.2017.8006960
10.1137/0211020
10.1090/S0002-9904-1976-13988-2
10.1109/ISIT.2018.8437563
10.1109/TC.1984.1676475
10.1109/ISIT.2019.8849252
10.1017/CBO9781139856065
10.1109/GLOCOM.2018.8647313
10.1109/PROC.1986.13535
10.1109/ISIT.2018.8437852
10.1002/cpe.4330060702
10.1109/SFCS.1981.27
10.1109/ISIT.2019.8849446
10.1137/0210032
10.1109/TIFS.2018.2846601
10.1016/j.tcs.2010.12.012
10.1109/SFCS.1978.34
10.1109/TIFS.2019.2940895
10.1109/ITW.2018.8613446
10.1007/BF02165411
10.1109/SFCS.1986.52
10.1007/BF02575865
10.1109/ALLERTON.2017.8262882
10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
10.1145/2213977.2214056
10.1109/GLOCOMW.2016.7848828
10.1109/ACCESS.2019.2908024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2019.2963864
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1933
ExternalDocumentID 10_1109_TIT_2019_2963864
8949560
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N000141612189
  funderid: 10.13039/100000006
– fundername: Defense Advanced Research Projects Agency
  grantid: HR001117C0053
  funderid: 10.13039/100000185
– fundername: National Science Foundation
  grantid: CCF-1703575; NeTS-1419632
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-ab766b563c0ab52ed6bce67a2834fc8e95a1a4823d85cae0e4be1d880be43c4b3
IEDL.DBID RIE
ISICitedReferencesCount 171
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519925900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Mon Jun 30 06:14:09 EDT 2025
Tue Nov 18 22:35:26 EST 2025
Sat Nov 29 03:31:43 EST 2025
Wed Aug 27 06:29:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ab766b563c0ab52ed6bce67a2834fc8e95a1a4823d85cae0e4be1d880be43c4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2034-5941
0000-0002-3222-1874
PQID 2358912639
PQPubID 36024
PageCount 14
ParticipantIDs proquest_journals_2358912639
ieee_primary_8949560
crossref_primary_10_1109_TIT_2019_2963864
crossref_citationtrail_10_1109_TIT_2019_2963864
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
jia (ref56) 2019
ref14
ref54
d’oliveira (ref53) 2019
ref17
ref16
ref19
ref18
tandon (ref10) 2016
sedoglavic (ref38) 2017
bläser (ref15) 2013
cannon (ref2) 1969
lee (ref8) 2015
ref46
ref45
ref48
ref47
ref42
ref44
ref43
nodehi (ref49) 2019
zaharia (ref7) 2008; 8
so (ref58) 2019
aliasgari (ref52) 2019
kakar (ref41) 2018
ref4
ref3
ref6
ref5
ref40
stothers (ref31) 2010
li (ref59) 2018
sedoglavic (ref37) 2017
dutta (ref9) 2016
ref35
ref34
ref36
ref30
ref33
ref32
ref1
ref39
yu (ref11) 2017
jia (ref55) 2019
ref24
ref23
jia (ref50) 2019
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
kakar (ref51) 2019
yu (ref57) 2019; 89
ref60
References_xml – ident: ref33
  doi: 10.1137/0120004
– ident: ref36
  doi: 10.1134/S0965542513120129
– year: 2019
  ident: ref51
  article-title: Uplink-downlink tradeoff in secure distributed matrix multiplication
  publication-title: arXiv 1910 13849
– year: 2019
  ident: ref52
  article-title: Private and secure distributed matrix multiplication with flexible communication load
  publication-title: arXiv 1909 00407
– ident: ref60
  doi: 10.1109/ISIT.2019.8849245
– ident: ref30
  doi: 10.1016/S0747-7171(08)80013-2
– ident: ref48
  doi: 10.1109/ICC.2019.8761275
– year: 2017
  ident: ref38
  article-title: A non-commutative algorithm for multiplying ( $7\times7$ ) matrices using 250 multiplications
  publication-title: arXiv 1712 07935
– ident: ref6
  doi: 10.1145/2408776.2408794
– year: 2013
  ident: ref15
  article-title: Fast matrix multiplication
  publication-title: Theory of Computing Library Graduate Surveys
– ident: ref44
  doi: 10.1109/ISIT.2019.8849606
– year: 2019
  ident: ref58
  article-title: Codedprivateml: A fast and privacy-preserving framework for distributed machine learning
  publication-title: arXiv 1902 00641
– year: 2019
  ident: ref55
  article-title: Cross subspace alignment codes for coded distributed batch matrix multiplication
  publication-title: arXiv 1909 13873
– volume: 8
  start-page: 7
  year: 2008
  ident: ref7
  article-title: Improving MapReduce performance in heterogeneous environments
  publication-title: Proc OSDI
– ident: ref13
  doi: 10.1109/MCOM.2017.1600894
– ident: ref14
  doi: 10.1109/TIT.2019.2904055
– ident: ref47
  doi: 10.1109/ITW44776.2019.8989342
– ident: ref19
  doi: 10.1109/ISIT.2017.8006963
– ident: ref5
  doi: 10.1007/978-3-642-23397-5_10
– volume: 89
  start-page: 1215
  year: 2019
  ident: ref57
  article-title: Lagrange coded computing: Optimal design for resiliency, security, and privacy
  publication-title: Mach Learn Res
– ident: ref16
  doi: 10.1109/ISIT.2017.8006960
– ident: ref27
  doi: 10.1137/0211020
– ident: ref34
  doi: 10.1090/S0002-9904-1976-13988-2
– ident: ref1
  doi: 10.1109/ISIT.2018.8437563
– ident: ref17
  doi: 10.1109/TC.1984.1676475
– ident: ref45
  doi: 10.1109/ISIT.2019.8849252
– ident: ref23
  doi: 10.1017/CBO9781139856065
– ident: ref39
  doi: 10.1109/GLOCOM.2018.8647313
– ident: ref22
  doi: 10.1109/PROC.1986.13535
– ident: ref21
  doi: 10.1109/ISIT.2018.8437852
– ident: ref3
  doi: 10.1002/cpe.4330060702
– start-page: 2092
  year: 2016
  ident: ref9
  article-title: Short-dot: Computing large linear transforms distributedly using coded short dot products
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 4406
  year: 2017
  ident: ref11
  article-title: Polynomial codes: An optimal design for high-dimensional coded matrix multiplication
  publication-title: Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1109/SFCS.1981.27
– year: 2019
  ident: ref50
  article-title: On the capacity of secure distributed matrix multiplication
  publication-title: arXiv 1908 06957
– ident: ref42
  doi: 10.1109/ISIT.2019.8849446
– ident: ref26
  doi: 10.1137/0210032
– ident: ref40
  doi: 10.1109/TIFS.2018.2846601
– year: 2019
  ident: ref49
  article-title: Secure coded multi-party computation for massive matrix operations
  publication-title: arXiv 1908 04255
– year: 1969
  ident: ref2
  article-title: A cellular computer to implement the Kalman filter algorithm
– ident: ref35
  doi: 10.1016/j.tcs.2010.12.012
– year: 2018
  ident: ref59
  article-title: Polyshard: Coded sharding achieves linearly scaling efficiency and security simultaneously
  publication-title: arXiv 1809 10361
– ident: ref24
  doi: 10.1109/SFCS.1978.34
– ident: ref54
  doi: 10.1109/TIFS.2019.2940895
– year: 2019
  ident: ref53
  article-title: Degree tables for secure distributed matrix multiplication
  publication-title: Proc ITW
– year: 2016
  ident: ref10
  article-title: Gradient coding
  publication-title: arXiv 1612 03301
– year: 2010
  ident: ref31
  article-title: On the complexity of matrix multiplication
– ident: ref43
  doi: 10.1109/ITW.2018.8613446
– year: 2015
  ident: ref8
  article-title: Speeding up distributed machine learning using codes
  publication-title: arXiv 1512 02673
– ident: ref20
  doi: 10.1007/BF02165411
– ident: ref29
  doi: 10.1109/SFCS.1986.52
– year: 2019
  ident: ref56
  article-title: Generalized cross subspace alignment codes for coded distributed batch matrix multiplication
– ident: ref25
  doi: 10.1007/BF02575865
– ident: ref18
  doi: 10.1109/ALLERTON.2017.8262882
– year: 2018
  ident: ref41
  article-title: Rate-efficiency and straggler-robustness through partition in distributed two-sided secure matrix computation
  publication-title: arXiv 1810 13006
– ident: ref4
  doi: 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
– ident: ref32
  doi: 10.1145/2213977.2214056
– ident: ref12
  doi: 10.1109/GLOCOMW.2016.7848828
– year: 2017
  ident: ref37
  article-title: A non-commutative algorithm for multiplying $5\times5$ matrices using 99 multiplications
  publication-title: arXiv 1707 06860
– ident: ref46
  doi: 10.1109/ACCESS.2019.2908024
SSID ssj0014512
Score 2.6852462
Snippet We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1920
SubjectTerms coded computing
Coding
Complexity
Complexity theory
Computer networks
Convolution
Data analysis
Delays
Distributed computing
Encoding
Fault tolerance
Matrices (mathematics)
matrix multiplication
Multiplication
Nodes
Optimization
Polynomials
Recovery
Redundancy
straggler mitigation
Task analysis
Title Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding
URI https://ieeexplore.ieee.org/document/8949560
https://www.proquest.com/docview/2358912639
Volume 66
WOSCitedRecordID wos000519925900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qeNCDryrWFzl4EVy7j-wj3kQtemj1UKG3NY9ZKdSttFX8-U6y26IogrdlSWDJN5PJbGa-D-AkQGPIjJRHwSTxOFmFp2REiSvPQimkJl-XTmwi7fWywUA8NOBs0QuDiK74DM_to7vLN2P9Zn-VtTPhjvNLsJSmSdWrtbgx4HFQMYMH5MCUc8yvJH3R7t_1bQ2XOA-ttSX8Wwhymio_NmIXXTob__uuTVivT5HssoJ9CxpYbsPGXKGB1Q67DWtf6Aab8GSpaJ-fRzSiO6y4NcYlG5bs2rLnWuErNKxrOfs_WLcqNKz_6F2wju0YqYQAmGuKmjJZGnZPO84Lvboa2xi4A4-dm_7VrVcrLHg6FMHMkypNEhUnkfalikM0idKYpJLOHLzQGYpYBpJQi0wWa4k-coWBIZdXyCPNVbQLy-W4xD1g0pc6NaHJVGB4ESpKW2hJKF8JClNgxlvQni96rmv6cauCMcpdGuKLnGDKLUx5DVMLThczXivqjT_GNi0si3E1Ii04nOOa1745zW1zsCDLjMT-77MOYDW0WbWrNDuE5dnkDY9gRb_PhtPJsTO7T53b1vQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwURXrcw9eBGPz2KRZb6KWFm31UKG3uI-pFDQVW8Wf7-wmLYoieAthN4T9ZnZ2dma-ATgK0BgSI-WRMUk8TlLhKRmR48rTUAqpSdelazZR73TSXk_czcDJtBYGEV3yGZ7aRxfLN0P9Zq_Kaqlwx_lZmI_pq35RrTWNGfA4KLjBA1Jh8jomQUlf1Lqtrs3iEqehlbeEfzNCrqvKj63Y2ZfG6v_-bA1WynMkOy-AX4cZzCuwOunRwEqVrcDyF8LBDXiwZLSPj080oj0o2DWGORvk7NLy59rWV2hY27L2f7B2kWpY3umdsYatGSlaATBXFjViMjfslvacZ3p1MbRWcBPuG1fdi6ZX9ljwdCiCsSdVPUlUnETalyoO0SRKY1KXdOrgfZ2iiGUgCbfIpLGW6CNXGBhSeoU80lxFWzCXD3PcBiZ9qesmNKkKDO-HihwXWhLyWIK-6WPKq1CbLHqmSwJy2wfjKXOOiC8ygimzMGUlTFU4ns54Kcg3_hi7YWGZjisRqcLeBNes1M5RZsuDBclmJHZ-n3UIi81u-ya7aXWud2EptD62yzvbg7nx6xvuw4J-Hw9GrwdOBD8B8eXaOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Straggler+Mitigation+in+Distributed+Matrix+Multiplication%3A+Fundamental+Limits+and+Optimal+Coding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Yu%2C+Qian&rft.au=Mohammad+Ali+Maddah-Ali&rft.au=Avestimehr%2C+A+Salman&rft.date=2020-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=66&rft.issue=3&rft.spage=1920&rft_id=info:doi/10.1109%2FTIT.2019.2963864&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon