Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding
We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slo...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 66; no. 3; pp. 1920 - 1933 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled polynomial code, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show that it provides orderwise improvement over the conventional schemes for straggler mitigation. Furthermore, we characterize the optimal recovery threshold among all linear coding strategies within a factor of 2 using bilinear complexity, by developing an improved version of the entangled polynomial code. In particular, while evaluating bilinear complexity is a well-known challenging problem, we show that optimal recovery threshold for linear coding strategies can be approximated within a factor of 2 of this fundamental quantity. On the other hand, the improved version of the entangled polynomial code enables further and orderwise reduction in the recovery threshold, compared to its basic version. Finally, we show that the techniques developed in this paper can also be extended to several other problems such as coded convolution and fault-tolerant computing, leading to tight characterizations. |
|---|---|
| AbstractList | We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled polynomial code, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show that it provides orderwise improvement over the conventional schemes for straggler mitigation. Furthermore, we characterize the optimal recovery threshold among all linear coding strategies within a factor of 2 using bilinear complexity, by developing an improved version of the entangled polynomial code. In particular, while evaluating bilinear complexity is a well-known challenging problem, we show that optimal recovery threshold for linear coding strategies can be approximated within a factor of 2 of this fundamental quantity. On the other hand, the improved version of the entangled polynomial code enables further and orderwise reduction in the recovery threshold, compared to its basic version. Finally, we show that the techniques developed in this paper can also be extended to several other problems such as coded convolution and fault-tolerant computing, leading to tight characterizations. |
| Author | Yu, Qian Maddah-Ali, Mohammad Ali Avestimehr, A. Salman |
| Author_xml | – sequence: 1 givenname: Qian orcidid: 0000-0002-2034-5941 surname: Yu fullname: Yu, Qian email: qyu880@usc.edu organization: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: Mohammad Ali orcidid: 0000-0002-3222-1874 surname: Maddah-Ali fullname: Maddah-Ali, Mohammad Ali email: maddah_ali@sharif.edu organization: Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran – sequence: 3 givenname: A. Salman surname: Avestimehr fullname: Avestimehr, A. Salman email: avestimehr@ee.usc.edu organization: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA |
| BookMark | eNp9kEtLAzEUhYNUsK3uBTcB11PzbuJOqlWhxYV1PWYytyUyzdRMBvTfm1px4cLVfXDOPZdvhAahDYDQOSUTSom5Wj2uJoxQM2FGca3EERpSKaeFUVIM0JAQqgsjhD5Bo657y6OQlA3R63OKdrNpIOKlT35jk28D9gHf-i5FX_UJary0uf3Ay75Jftd49y26xvM-1HYLIdkGL_zWpw7bUOOnXfLbvJq1tQ-bU3S8tk0HZz91jF7md6vZQ7F4un-c3SwKxwxNha2mSlVScUdsJRnUqnKgppZpLtZOg5GWWqEZr7V0FgiICmitNalAcCcqPkaXh7u72L730KXyre1jyJEl41IbyhQ3WUUOKhfbrouwLncxPxs_S0rKPccycyz3HMsfjtmi_licT98EMjnf_Ge8OBg9APzmaCOMVIR_AaShg4M |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_JSAC_2022_3142366 crossref_primary_10_1109_JSAC_2022_3142364 crossref_primary_10_1109_TIT_2021_3127910 crossref_primary_10_1109_TVT_2025_3533576 crossref_primary_10_1109_TWC_2023_3307140 crossref_primary_10_3233_IDT_230309 crossref_primary_10_1016_j_envres_2021_112572 crossref_primary_10_1109_TCOMM_2021_3056089 crossref_primary_10_1109_TIT_2025_3541808 crossref_primary_10_1109_TIT_2025_3529680 crossref_primary_10_1109_JIOT_2024_3394714 crossref_primary_10_1109_TIT_2025_3556384 crossref_primary_10_1109_TWC_2024_3366547 crossref_primary_10_3390_electronics13224403 crossref_primary_10_1109_TSP_2024_3467262 crossref_primary_10_1109_TCOMM_2021_3107432 crossref_primary_10_1109_TCOMM_2024_3450797 crossref_primary_10_1109_TCOMM_2022_3164056 crossref_primary_10_1109_TIT_2021_3095909 crossref_primary_10_1109_TIT_2024_3380738 crossref_primary_10_1109_TCCN_2022_3174615 crossref_primary_10_1016_j_jksuci_2024_102073 crossref_primary_10_1109_TIT_2021_3127920 crossref_primary_10_1109_TCOMM_2023_3275166 crossref_primary_10_1109_TIT_2024_3382257 crossref_primary_10_1016_j_comnet_2025_111381 crossref_primary_10_1016_j_phycom_2024_102499 crossref_primary_10_1109_TIT_2021_3064827 crossref_primary_10_1109_TETC_2025_3562192 crossref_primary_10_1109_TIT_2021_3112952 crossref_primary_10_1109_TIT_2024_3510293 crossref_primary_10_1109_TNET_2021_3122873 crossref_primary_10_1109_TCC_2024_3415165 crossref_primary_10_1109_TIT_2025_3573708 crossref_primary_10_1109_TWC_2023_3331263 crossref_primary_10_1109_LCOMM_2020_3044727 crossref_primary_10_1109_TNET_2021_3075377 crossref_primary_10_1109_TPDS_2023_3276888 crossref_primary_10_1109_TIT_2022_3204488 crossref_primary_10_1016_j_hcc_2025_100339 crossref_primary_10_1109_TMC_2024_3418449 crossref_primary_10_1109_TCOMM_2023_3326193 crossref_primary_10_1109_COMST_2021_3091684 crossref_primary_10_3390_e25020266 crossref_primary_10_1016_j_icte_2023_02_002 crossref_primary_10_1109_TIT_2024_3420222 crossref_primary_10_1109_TCOMM_2020_3032196 crossref_primary_10_1109_TCCN_2024_3391317 crossref_primary_10_1109_TIFS_2022_3173417 crossref_primary_10_1109_TIFS_2022_3147642 crossref_primary_10_1109_TIFS_2023_3249565 crossref_primary_10_1109_TIT_2025_3536323 crossref_primary_10_1016_j_ins_2024_120582 crossref_primary_10_1109_JIOT_2024_3442012 crossref_primary_10_1109_TCOMM_2023_3236385 crossref_primary_10_1109_TSC_2024_3395931 crossref_primary_10_1109_TSP_2025_3537409 crossref_primary_10_1109_TIFS_2023_3326970 crossref_primary_10_1109_TMC_2023_3246994 crossref_primary_10_1109_TC_2023_3262922 crossref_primary_10_1109_TIT_2022_3152827 crossref_primary_10_3390_e26060448 crossref_primary_10_1109_TIT_2022_3206868 crossref_primary_10_1109_ACCESS_2020_3031590 crossref_primary_10_1109_JSAC_2022_3142355 crossref_primary_10_1109_TIFS_2024_3450288 crossref_primary_10_1109_TCCN_2024_3502495 crossref_primary_10_1109_JSAC_2022_3142352 crossref_primary_10_3390_e26100881 crossref_primary_10_1109_JSAC_2022_3142358 crossref_primary_10_1109_TIT_2022_3157835 crossref_primary_10_1109_TSP_2022_3182221 crossref_primary_10_1109_TIT_2025_3577019 crossref_primary_10_1109_ACCESS_2021_3135581 crossref_primary_10_1109_TIT_2024_3513693 crossref_primary_10_1109_TC_2024_3387069 crossref_primary_10_1109_TCOMM_2020_2988506 crossref_primary_10_1109_TCOMM_2023_3286420 crossref_primary_10_1109_TIT_2021_3137266 crossref_primary_10_1007_s11227_020_03241_x crossref_primary_10_1109_TCOMM_2021_3083730 crossref_primary_10_1109_TIFS_2022_3147638 crossref_primary_10_1109_TCOMM_2024_3492071 crossref_primary_10_1109_TIT_2025_3565558 crossref_primary_10_1109_TNSE_2022_3228322 crossref_primary_10_1109_TIT_2021_3068165 crossref_primary_10_1109_TCOMM_2021_3107942 crossref_primary_10_1109_TIT_2021_3050526 crossref_primary_10_1109_TNET_2021_3058685 crossref_primary_10_1109_TIT_2022_3143199 crossref_primary_10_1109_TIT_2023_3283967 crossref_primary_10_1109_TPAMI_2022_3151434 crossref_primary_10_1109_JIOT_2024_3506595 crossref_primary_10_1109_TIFS_2024_3377929 |
| Cites_doi | 10.1137/0120004 10.1134/S0965542513120129 10.1109/ISIT.2019.8849245 10.1016/S0747-7171(08)80013-2 10.1109/ICC.2019.8761275 10.1145/2408776.2408794 10.1109/ISIT.2019.8849606 10.1109/MCOM.2017.1600894 10.1109/TIT.2019.2904055 10.1109/ITW44776.2019.8989342 10.1109/ISIT.2017.8006963 10.1007/978-3-642-23397-5_10 10.1109/ISIT.2017.8006960 10.1137/0211020 10.1090/S0002-9904-1976-13988-2 10.1109/ISIT.2018.8437563 10.1109/TC.1984.1676475 10.1109/ISIT.2019.8849252 10.1017/CBO9781139856065 10.1109/GLOCOM.2018.8647313 10.1109/PROC.1986.13535 10.1109/ISIT.2018.8437852 10.1002/cpe.4330060702 10.1109/SFCS.1981.27 10.1109/ISIT.2019.8849446 10.1137/0210032 10.1109/TIFS.2018.2846601 10.1016/j.tcs.2010.12.012 10.1109/SFCS.1978.34 10.1109/TIFS.2019.2940895 10.1109/ITW.2018.8613446 10.1007/BF02165411 10.1109/SFCS.1986.52 10.1007/BF02575865 10.1109/ALLERTON.2017.8262882 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2 10.1145/2213977.2214056 10.1109/GLOCOMW.2016.7848828 10.1109/ACCESS.2019.2908024 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TIT.2019.2963864 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 1933 |
| ExternalDocumentID | 10_1109_TIT_2019_2963864 8949560 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Office of Naval Research grantid: N000141612189 funderid: 10.13039/100000006 – fundername: Defense Advanced Research Projects Agency grantid: HR001117C0053 funderid: 10.13039/100000185 – fundername: National Science Foundation grantid: CCF-1703575; NeTS-1419632 funderid: 10.13039/501100008982 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-ab766b563c0ab52ed6bce67a2834fc8e95a1a4823d85cae0e4be1d880be43c4b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 171 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519925900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Mon Jun 30 06:14:09 EDT 2025 Tue Nov 18 22:35:26 EST 2025 Sat Nov 29 03:31:43 EST 2025 Wed Aug 27 06:29:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-ab766b563c0ab52ed6bce67a2834fc8e95a1a4823d85cae0e4be1d880be43c4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2034-5941 0000-0002-3222-1874 |
| PQID | 2358912639 |
| PQPubID | 36024 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2358912639 ieee_primary_8949560 crossref_primary_10_1109_TIT_2019_2963864 crossref_citationtrail_10_1109_TIT_2019_2963864 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 jia (ref56) 2019 ref14 ref54 d’oliveira (ref53) 2019 ref17 ref16 ref19 ref18 tandon (ref10) 2016 sedoglavic (ref38) 2017 bläser (ref15) 2013 cannon (ref2) 1969 lee (ref8) 2015 ref46 ref45 ref48 ref47 ref42 ref44 ref43 nodehi (ref49) 2019 zaharia (ref7) 2008; 8 so (ref58) 2019 aliasgari (ref52) 2019 kakar (ref41) 2018 ref4 ref3 ref6 ref5 ref40 stothers (ref31) 2010 li (ref59) 2018 sedoglavic (ref37) 2017 dutta (ref9) 2016 ref35 ref34 ref36 ref30 ref33 ref32 ref1 ref39 yu (ref11) 2017 jia (ref55) 2019 ref24 ref23 jia (ref50) 2019 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 kakar (ref51) 2019 yu (ref57) 2019; 89 ref60 |
| References_xml | – ident: ref33 doi: 10.1137/0120004 – ident: ref36 doi: 10.1134/S0965542513120129 – year: 2019 ident: ref51 article-title: Uplink-downlink tradeoff in secure distributed matrix multiplication publication-title: arXiv 1910 13849 – year: 2019 ident: ref52 article-title: Private and secure distributed matrix multiplication with flexible communication load publication-title: arXiv 1909 00407 – ident: ref60 doi: 10.1109/ISIT.2019.8849245 – ident: ref30 doi: 10.1016/S0747-7171(08)80013-2 – ident: ref48 doi: 10.1109/ICC.2019.8761275 – year: 2017 ident: ref38 article-title: A non-commutative algorithm for multiplying ( $7\times7$ ) matrices using 250 multiplications publication-title: arXiv 1712 07935 – ident: ref6 doi: 10.1145/2408776.2408794 – year: 2013 ident: ref15 article-title: Fast matrix multiplication publication-title: Theory of Computing Library Graduate Surveys – ident: ref44 doi: 10.1109/ISIT.2019.8849606 – year: 2019 ident: ref58 article-title: Codedprivateml: A fast and privacy-preserving framework for distributed machine learning publication-title: arXiv 1902 00641 – year: 2019 ident: ref55 article-title: Cross subspace alignment codes for coded distributed batch matrix multiplication publication-title: arXiv 1909 13873 – volume: 8 start-page: 7 year: 2008 ident: ref7 article-title: Improving MapReduce performance in heterogeneous environments publication-title: Proc OSDI – ident: ref13 doi: 10.1109/MCOM.2017.1600894 – ident: ref14 doi: 10.1109/TIT.2019.2904055 – ident: ref47 doi: 10.1109/ITW44776.2019.8989342 – ident: ref19 doi: 10.1109/ISIT.2017.8006963 – ident: ref5 doi: 10.1007/978-3-642-23397-5_10 – volume: 89 start-page: 1215 year: 2019 ident: ref57 article-title: Lagrange coded computing: Optimal design for resiliency, security, and privacy publication-title: Mach Learn Res – ident: ref16 doi: 10.1109/ISIT.2017.8006960 – ident: ref27 doi: 10.1137/0211020 – ident: ref34 doi: 10.1090/S0002-9904-1976-13988-2 – ident: ref1 doi: 10.1109/ISIT.2018.8437563 – ident: ref17 doi: 10.1109/TC.1984.1676475 – ident: ref45 doi: 10.1109/ISIT.2019.8849252 – ident: ref23 doi: 10.1017/CBO9781139856065 – ident: ref39 doi: 10.1109/GLOCOM.2018.8647313 – ident: ref22 doi: 10.1109/PROC.1986.13535 – ident: ref21 doi: 10.1109/ISIT.2018.8437852 – ident: ref3 doi: 10.1002/cpe.4330060702 – start-page: 2092 year: 2016 ident: ref9 article-title: Short-dot: Computing large linear transforms distributedly using coded short dot products publication-title: Proc Adv Neural Inf Process Syst – start-page: 4406 year: 2017 ident: ref11 article-title: Polynomial codes: An optimal design for high-dimensional coded matrix multiplication publication-title: Adv Neural Inf Process Syst – ident: ref28 doi: 10.1109/SFCS.1981.27 – year: 2019 ident: ref50 article-title: On the capacity of secure distributed matrix multiplication publication-title: arXiv 1908 06957 – ident: ref42 doi: 10.1109/ISIT.2019.8849446 – ident: ref26 doi: 10.1137/0210032 – ident: ref40 doi: 10.1109/TIFS.2018.2846601 – year: 2019 ident: ref49 article-title: Secure coded multi-party computation for massive matrix operations publication-title: arXiv 1908 04255 – year: 1969 ident: ref2 article-title: A cellular computer to implement the Kalman filter algorithm – ident: ref35 doi: 10.1016/j.tcs.2010.12.012 – year: 2018 ident: ref59 article-title: Polyshard: Coded sharding achieves linearly scaling efficiency and security simultaneously publication-title: arXiv 1809 10361 – ident: ref24 doi: 10.1109/SFCS.1978.34 – ident: ref54 doi: 10.1109/TIFS.2019.2940895 – year: 2019 ident: ref53 article-title: Degree tables for secure distributed matrix multiplication publication-title: Proc ITW – year: 2016 ident: ref10 article-title: Gradient coding publication-title: arXiv 1612 03301 – year: 2010 ident: ref31 article-title: On the complexity of matrix multiplication – ident: ref43 doi: 10.1109/ITW.2018.8613446 – year: 2015 ident: ref8 article-title: Speeding up distributed machine learning using codes publication-title: arXiv 1512 02673 – ident: ref20 doi: 10.1007/BF02165411 – ident: ref29 doi: 10.1109/SFCS.1986.52 – year: 2019 ident: ref56 article-title: Generalized cross subspace alignment codes for coded distributed batch matrix multiplication – ident: ref25 doi: 10.1007/BF02575865 – ident: ref18 doi: 10.1109/ALLERTON.2017.8262882 – year: 2018 ident: ref41 article-title: Rate-efficiency and straggler-robustness through partition in distributed two-sided secure matrix computation publication-title: arXiv 1810 13006 – ident: ref4 doi: 10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2 – ident: ref32 doi: 10.1145/2213977.2214056 – ident: ref12 doi: 10.1109/GLOCOMW.2016.7848828 – year: 2017 ident: ref37 article-title: A non-commutative algorithm for multiplying $5\times5$ matrices using 99 multiplications publication-title: arXiv 1707 06860 – ident: ref46 doi: 10.1109/ACCESS.2019.2908024 |
| SSID | ssj0014512 |
| Score | 2.6852462 |
| Snippet | We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1920 |
| SubjectTerms | coded computing Coding Complexity Complexity theory Computer networks Convolution Data analysis Delays Distributed computing Encoding Fault tolerance Matrices (mathematics) matrix multiplication Multiplication Nodes Optimization Polynomials Recovery Redundancy straggler mitigation Task analysis |
| Title | Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding |
| URI | https://ieeexplore.ieee.org/document/8949560 https://www.proquest.com/docview/2358912639 |
| Volume | 66 |
| WOSCitedRecordID | wos000519925900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qeNCDryrWFzl4EVy7j-wj3kQtemj1UKG3NY9ZKdSttFX8-U6y26IogrdlSWDJN5PJbGa-D-AkQGPIjJRHwSTxOFmFp2REiSvPQimkJl-XTmwi7fWywUA8NOBs0QuDiK74DM_to7vLN2P9Zn-VtTPhjvNLsJSmSdWrtbgx4HFQMYMH5MCUc8yvJH3R7t_1bQ2XOA-ttSX8Wwhymio_NmIXXTob__uuTVivT5HssoJ9CxpYbsPGXKGB1Q67DWtf6Aab8GSpaJ-fRzSiO6y4NcYlG5bs2rLnWuErNKxrOfs_WLcqNKz_6F2wju0YqYQAmGuKmjJZGnZPO84Lvboa2xi4A4-dm_7VrVcrLHg6FMHMkypNEhUnkfalikM0idKYpJLOHLzQGYpYBpJQi0wWa4k-coWBIZdXyCPNVbQLy-W4xD1g0pc6NaHJVGB4ESpKW2hJKF8JClNgxlvQni96rmv6cauCMcpdGuKLnGDKLUx5DVMLThczXivqjT_GNi0si3E1Ii04nOOa1745zW1zsCDLjMT-77MOYDW0WbWrNDuE5dnkDY9gRb_PhtPJsTO7T53b1vQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwURXrcw9eBGPz2KRZb6KWFm31UKG3uI-pFDQVW8Wf7-wmLYoieAthN4T9ZnZ2dma-ATgK0BgSI-WRMUk8TlLhKRmR48rTUAqpSdelazZR73TSXk_czcDJtBYGEV3yGZ7aRxfLN0P9Zq_Kaqlwx_lZmI_pq35RrTWNGfA4KLjBA1Jh8jomQUlf1Lqtrs3iEqehlbeEfzNCrqvKj63Y2ZfG6v_-bA1WynMkOy-AX4cZzCuwOunRwEqVrcDyF8LBDXiwZLSPj080oj0o2DWGORvk7NLy59rWV2hY27L2f7B2kWpY3umdsYatGSlaATBXFjViMjfslvacZ3p1MbRWcBPuG1fdi6ZX9ljwdCiCsSdVPUlUnETalyoO0SRKY1KXdOrgfZ2iiGUgCbfIpLGW6CNXGBhSeoU80lxFWzCXD3PcBiZ9qesmNKkKDO-HihwXWhLyWIK-6WPKq1CbLHqmSwJy2wfjKXOOiC8ygimzMGUlTFU4ns54Kcg3_hi7YWGZjisRqcLeBNes1M5RZsuDBclmJHZ-n3UIi81u-ya7aXWud2EptD62yzvbg7nx6xvuw4J-Hw9GrwdOBD8B8eXaOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Straggler+Mitigation+in+Distributed+Matrix+Multiplication%3A+Fundamental+Limits+and+Optimal+Coding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Yu%2C+Qian&rft.au=Mohammad+Ali+Maddah-Ali&rft.au=Avestimehr%2C+A+Salman&rft.date=2020-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=66&rft.issue=3&rft.spage=1920&rft_id=info:doi/10.1109%2FTIT.2019.2963864&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |